Tìm số tự nhiên x,y và y nhỏ nhất sao cho: 405x-2014y=5042014
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,12⋮x-1\)
\(x-1\inƯ\left(12\right)=\left\{\pm1;\pm2;\pm3;\pm4;\pm12\right\}\)
Ta lập bảng xét giá trị
x - 1 1 -1 2 -2 3 -3 4 -4 12 -12
x 2 0 3 -1 4 -2 5 -3 13 -11
\(c,x+15⋮x+3\)
\(x+3+12⋮x+3\)
\(12⋮x+3\)
Tự lập bảng , lười ~~~
\(d,\left(x+1\right)\left(y-1\right)=3\)
Ta lập bảng
x+1 | 1 | -1 | 3 | -3 |
y-1 | 3 | -3 | 1 | -1 |
x | 2 | 0 | 2 | -4 |
y | 4 | -2 | 2 | 0 |
i, Theo bài ra ta có : ( olm thiếu dấu và == nên trình bày kiủ nài )
\(x⋮10,x⋮12,x⋮15\)và \(100< x< 150\)
Gợi ý : Phân tích thừa số nguyên tố r xét ''BC'' ( chắc là BC )
:>> Hc tốt
a/ GỌi số đó là A. A:5 dư 3 => A-3 chia hết cho 5 => A-3+5 chia hết cho 5 =>A+2 chia hết cho 5. A: 7 dư 4 => A-4 chia hết cho 7=> A-4+7 chia hết cho 7=> A+3 chia hết cho 7. A:9 dư 5 => A-5 chia hết cho 9 => A-5+9 chia hết cho 9 =>A+4 chia hết cho9 Có 63 chia hết cho 7 và 9 => 63*(A+2) chia hết cho 7,9 Mà A+2 chia hết cho 5 => 63*(A+2) chia hết cho 5,7,9 Có bội chung nhỏ nhất 5,7,9 là 315 => 63*(A+2) =315 =>A=3. Mình sắp học thêm, nhưng nhất định sẽ gửi con B cho bạn. Thân^^
Có y là số tự nhiên => x+4 phải chia hết x+1 Có x+1 chia hết cho x+1 => x+4-(x+1) chia hết cho x+1 => 3 chia hết cho x+1 => x+1 thuộc ước của 3 : 1;-1;3;-3 => x thuộc 2;0;-4;-2. =>y thuộc 2;4;0;-2.
1.64a=80b=96c=>\(\frac{64a}{960}=\frac{80b}{960}=\frac{96c}{960}\)
=>\(\frac{a}{15}=\frac{b}{12}=\frac{c}{10}\)
......ko biết
2.Có:xy+3x+y=4
=>x(y+3)+y=4
=>x(y+3)+(y+3)=4+3=7
=>(x+1)(y+3)=7=>x+1 và y+3 thuộc Ư(7)
x+1 | -1 | -7 | 1 | 7 |
y+3 | -7 | -1 | 7 | 1 |
x | -2 | -8 | 0 | 6 |
y | -10 | -4 | 4 | -2 |
Với các cặp số(x;y) trên ko có số nào thỏa mãn x+y=19
Ta có: 64=2.2.2.2.2.2
80=2.2.2.2.5
96=2.2.2.2.2.3
=>BCLN(64,80,96)=2.2.2.2.2.2.3.5=960
Vì a,b,c nhỏ nhất nên 64a=80b=96c
=>a=960:64=15
b=960:80=12
c=960:96=10
Vậy a=15 ; b=12 ; c=10
1. Ta có: a chia có 7 dư 3 => a - 3 chia hết cho 7
=> 4 (a - 3) chia hết cho 7 => 4a - 12 chia hết cho 7
=> 4a - 12 + 7 chia hết cho 7 => 4a - 5 chia hết cho 7 (1)
a chia cho 13 dư 11 => a - 11 chia hết cho 13
=> 4 (a - 11) chia hết cho 13 => 4a - 44 chia hết cho 13
=> 4a - 44 + 39 chia hết cho 13 => 4a - 5 chia hết cho 13 (2)
a chia cho 17 dư 14 => a - 14 chia hết cho 17
=> 4 ( a - 14) chia hết cho 17 => 4a - 56 chia hết cho 17
=> 4a - 56 + 51 chia hết cho 17 => 4a - 5 chia hết cho 17 (3)
Từ (1), (2) và (3) => 4a - 5 thuộc BC(7;13;17)
Mà a nhỏ nhất => 4a - 5 nhỏ nhất
=> 4a - 5 = BCNN(7;13;17) = 7 . 13 . 17 = 1547
=> 4a = 1552 => a= 388
2. Gọi ƯCLN(a,b) = d
=> a = d . m (ƯCLN(m,n) = 1)
b = d . n
Do a < b => m<n
Vì BCNN(a,b) . ƯCLN(a,b) = a . b
\(\Rightarrow BCNN\left(a,b\right)=\frac{a\cdot b}{ƯCLN\left(a,b\right)}=\frac{d\cdot m\cdot d\cdot n}{d}=m\cdot n\cdot d\)
Vì BCNN(a,b) + ƯCLN(a,b) = 19
=> m . n . d + d = 19
=> d . (m . n + 1) = 19
=> m . n + 1 thuộc Ư(19); \(m\cdot n+1\ge2\)
Ta có bảng sau:
Vậy (a,b) = (2;9) ; (1 ; 18)
3.
\(10x=14y=15z\)
\(BCNN\left(10;14;15\right)=2.3.5.7=210\)
\(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{210}{10}=21\\y=\dfrac{210}{14}=15\\z=\dfrac{210}{15}=14\end{matrix}\right.\)
Vậy \(\left(x;y;z\right)=\left(21;15;14\right)\)
Ta có: \(1,2< y< 3,4\) với \(y\) là số tự nhiên
\(\Rightarrow y\in\left\{2;3\right\}\)
Vậy y nhỏ nhất là: \(2\)