Cho hệ ptrình với tham số m,
\(\hept{\begin{cases}x+y=3m+2\\3x-2y=11-m\end{cases}}\)
a,Giải hệ ptrình đã cho
b,Tìm m để \(x^2\)-\(y^2\)đạt giá trị lớn nhất
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
từ phương trình thứ nhất ta có :
\(y=-x+3m+2\) thế xuống phương trình dười : \(3x+2x-6m-4=11-m\Leftrightarrow x=3+m\Rightarrow y=2m-1\)
b. ta có \(x^2-y^2=\left(m+3\right)^2-\left(2m-1\right)^2=-3m^2+10m+8=-3\left(m-\frac{5}{3}\right)^2+\frac{49}{3}\le\frac{49}{3}\)
Dấu bằng xảy ra khi m=5/3
\(\left\{{}\begin{matrix}x+my=3\\m^2x+my=2m^2+m\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x+my=3\\\left(m^2-1\right)x=2m^2+m-3\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x+my=3\\x=\dfrac{2m+3}{m+1}\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{2m+3}{m+1}\\y=\dfrac{1}{m+1}\end{matrix}\right.\)
\(P=\left(\dfrac{2m+3}{m+1}\right)^2+\dfrac{3}{\left(m+1\right)^2}=\left(2+\dfrac{1}{m+1}\right)^2+\dfrac{3}{\left(m+1\right)^2}\)
\(=4+\dfrac{4}{m+1}+\dfrac{4}{\left(m+1\right)^2}=\left(\dfrac{2}{m+1}+1\right)^2+3\ge3\)
\(P_{min}=3\) khi \(m=-3\)
HPT\(\Leftrightarrow\hept{\begin{cases}x=3m+2-y\\3\left(3m+2-y\right)-2y+m-11=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=3m+2-y\\-5y+10m-5=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=3m+2-\left(2m-1\right)\\y=2m-1\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=m+3\\y=2m-1\end{cases}}\)
Ta co:
\(x^2-y^2=\left(m+3\right)^2-\left(2m-1\right)^2=-3m^2+10m+8=-3\left(m-\frac{5}{3}\right)^2+\frac{49}{3}\le\frac{49}{3}\)
Dau '=' xay ra khi \(m=\frac{5}{3}\)
\(\Rightarrow\left(x;y\right)=\left(\frac{14}{3};\frac{7}{3}\right)\)
Vay cap nghiem (x;y) de \(x^2-y^2\)dat max la \(\left(\frac{14}{3};\frac{7}{3}\right)\)
Xét hệ phương trình :\(\hept{\begin{cases}mx-y=1\\\frac{x}{2}-\frac{y}{3}=334\end{cases}}\)
a, Khi m = 1 ta có hệ phương trình : \(\hept{\begin{cases}x-y=1\\3x-2y=2004\end{cases}\Leftrightarrow\hept{\begin{cases}x=2002\\y=2001\end{cases}}}\)
b, \(\hept{\begin{cases}mx-y=1\\\frac{x}{2}-\frac{y}{3}=334\end{cases}\Leftrightarrow\hept{\begin{cases}mx-y=1\\3x-2y=2004\end{cases}}}\)
Hệ phương trình vô nghiệm khi \(\frac{m}{3}=\frac{1}{2}\ne\frac{1}{2004}\Leftrightarrow m=\frac{3}{2}\)
jhyfhregrjhesdftruiejxfhrjehxgmjfd;j03169543256545449526u4tnkuyfnikuyf42b 4r 6e524brd62v4utq7w8e9r96f5d4s1d323g5t5esd232df2f5e2s2sd
Đk để hpt luôn có nghiệm duy nhất (x;y) \(\frac{4}{1}\ne\frac{3}{2}\) (luôn đúng)
\(HPT\Leftrightarrow\hept{\begin{cases}4x-3y=m-10\\4x+8y=12m+12\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}11y=11m+22\\x+2y=3m+3\end{cases}\Leftrightarrow\hept{\begin{cases}y=\frac{11m+22}{11}\\x=3m+3-2y\end{cases}}}\)
\(\Leftrightarrow\hept{\begin{cases}y=\frac{11m+22}{11}\\x=\frac{33m+33-22m-44}{11}\end{cases}\Leftrightarrow\hept{\begin{cases}y=\frac{11m+22}{11}\\x=\frac{11m-11}{11}\end{cases}}}\)\(\Leftrightarrow\hept{\begin{cases}x=m-1\\y=m+2\end{cases}}\)
Vậy vơi mọi m thì hpt có nghiệm duy nhất (x;y)=(m-1;m+2)
Ta có:\(x^2+y^2=\left(m-1\right)^2+\left(m+2\right)^2\)
\(=m^2-2m+1+m^2+4m+4\)
\(=2m^2+2m+5=2\left(m^2+m+\frac{5}{2}\right)\)
\(=2\left(m^2+m+\frac{1}{4}+\frac{9}{4}\right)=2\left(m+\frac{1}{2}\right)^2+\frac{9}{2}\ge\frac{9}{2}\)
Để x2+y2 nhỏ nhất <=> \(2\left(m+\frac{1}{2}\right)^2\) nhỏ nhất <=> m+1/2=0 <=> m=-1/2
cho hệ phương trình \(\hept{\begin{cases}mx+y=10\\2x-3y=6\end{cases}}\)
a,Khi m= 1,ta có hệ phương trình \(\hept{\begin{cases}x+y=10\\2x-3y=6\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{36}{5}\\y=\frac{14}{5}\end{cases}}\)
b, hệ phương trình vô nghiệm khi\(\frac{m}{2}=\frac{1}{-3}\ne\frac{10}{6}\Leftrightarrow m=-\frac{2}{3}\)
\(\Leftrightarrow\left\{{}\begin{matrix}2x+2y=6m+4\\3x-2y=11-m\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2x+2y=6m+4\\5x=5m+15\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=m+3\\y=2m-1\end{matrix}\right.\)
b. \(P=\left(m+3\right)^2-\left(2m-1\right)^2\)
\(P=-3m^2+10m+10=-3\left(m-\dfrac{5}{3}\right)^2+\dfrac{55}{3}\le\dfrac{55}{3}\)
Dấu "=" xảy ra khi \(m=\dfrac{5}{3}\)