Bài 4. Cho hình vẽ biết MN // BC. Tính độ dài MN và AC.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, ∠ANM = ∠CBN (=90 độ) (chúng ở vị trí đồng vị)
=> MN//BC , theo hệ quả định lý Talet ta có:
AN/AB = MN/BC, cho AB=x (cm) thì AN = x-6 (cm)
Nên: (x-6)/x=1,5/6 => x=8(cm)
Nên AB = 8 cm
b, AD là đường phân giác của tam giác ABC nên:
AB/AC = BD/DC, nếu cho BD=x (cm) thì ta có DC=5-x (cm)
Nên: 4/6=x/(5-x) => 20=10x => x=2 (cm), nên BD= 2 cm
=> DC=3 cm
Theo hình vẽ ta có: AC//BE => ∠ACD = ∠DBE (so le trong)
Xét △BDE và △CDA có:
∠ACD=∠DBE (c/m tr)
∠ADC=∠BDE (đối đỉnh)
=> △BDE=△CDA (g.g)
=> BE/AC = BD/CD => BE/6=2/3 => BE=12:3=4 (cm)
Vậy: BD= 2 cm
BE= 4 cm
Ta có: MN // BC (gt), áp dụng hệ quả của định lý Ta – lét suy ra:
Suy ra: (Hệ quả định lí Ta-lét)
a) Xét tam giác ABC có
M là trung điểm của AB(gt)
MN//BC(gt)
=> N là trung điểm của AC
\(\Rightarrow NC=\dfrac{1}{2}AC=\dfrac{1}{2}.6=3\left(cm\right)\)
b) Ta có MN//BC(gt)
Mà \(I\in MN,K\in BC\)
\(\Rightarrow IN//KC\)
Xét tam giác AKC có:
IN//KC(cmt)
N là trung điểm của AC( cmt)
=> I là trung điểm của AK(đpcm)
a/ Ta có hình thang ABCD với A=D=90 độ và AC vuông BD. Vì AD=3 căn 13cm và OD=9cm, ta có:
OD^2 + AD^2 = OA^2
9^2 + (3 căn 13)^2 = OA^2
81 + 9*13 = OA^2
81 + 117 = OA^2
198 = OA^2
OA = căn 198 cm
Vì AC vuông BD, ta có:
AC^2 + BD^2 = OA^2
AC^2 + (AD - BC)^2 = OA^2
AC^2 + (3 căn 13 - BC)^2 = 198
AC^2 + 9*13 - 6 căn 13 * BC + BC^2 = 198
AC^2 + BC^2 - 6 căn 13 * BC + 117 = 198
AC^2 + BC^2 - 6 căn 13 * BC = 198 - 117
AC^2 + BC^2 - 6 căn 13 * BC = 81
Vì AC vuông BD, ta có:
AC^2 + BD^2 = OA^2
AC^2 + (AD - BC)^2 = OA^2
AC^2 + (3 căn 13 - BC)^2 = 198
AC^2 + 9*13 - 6 căn 13 * BC + BC^2 = 198
AC^2 + BC^2 - 6 căn 13 * BC + 117 = 198
AC^2 + BC^2 - 6 căn 13 * BC = 198 - 117
AC^2 + BC^2 - 6 căn 13 * BC = 81
b/ Qua O vẽ đường thẳng song song với đáy cắt AD và BC tại M và N. Ta có:
MN = AD - BC
MN = 3 căn 13 - BC
- Áp dụng định lý talet vào tam giác ABC ( MN//BC ) ta được :
\(\dfrac{AB}{AN}=\dfrac{AC}{AM}=\dfrac{BC}{MN}=\dfrac{25}{10}=\dfrac{AC}{16}=\dfrac{45}{MN}\)
\(\Rightarrow\left\{{}\begin{matrix}AC=40\\MN=18\end{matrix}\right.\) ( đvđd )
Vậy ...
- Áp dụng định lý talet vào tam giác ABC ( MN//BC ) ta được :
AB/AN=AC/AM=BC/MN=25/10=AC/16=45/MN
⇒AC=40 ( đvđd )
MN =18 ( đvđd )
Vậy ...