K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 2 2021

Bài 1:

a) đk: \(x\ne\pm2\)

b) Ta có:

\(A=\left(\frac{1}{2-x}+\frac{3x}{x^2-4}-\frac{2}{2+x}\right)\div\left(\frac{x^2+4}{4-x^2}+1\right)\)

\(A=\left[\frac{1}{2-x}-\frac{3x}{\left(2-x\right)\left(2+x\right)}-\frac{2}{2+x}\right]\div\frac{x^2+4+4-x^2}{\left(2-x\right)\left(2+x\right)}\)

\(A=\frac{2+x-3x-2\left(2-x\right)}{\left(2-x\right)\left(2+x\right)}\div\frac{8}{\left(2-x\right)\left(2+x\right)}\)

\(A=\frac{2-2x-4+2x}{\left(2-x\right)\left(2+x\right)}\cdot\frac{\left(2-x\right)\left(2+x\right)}{8}\)

\(A=\frac{-2}{\left(2-x\right)\left(2+x\right)}\cdot\frac{\left(2-x\right)\left(2+x\right)}{8}=-\frac{1}{4}\)

=> đpcm

2 tháng 2 2021

Bài 2: 

a) đk: \(x\ne\left\{-3;0;3\right\}\)

b) Ta có:

\(B=\left[\frac{3-x}{x+3}\cdot\frac{x^2+3x+9}{\left(x-3\right)\left(x+3\right)}+\frac{x}{x+3}\right]\div\frac{3x^2}{x+3}\)

\(B=\left[\frac{-x^2-3x-9}{\left(x+3\right)^2}+\frac{x}{x+3}\right]\cdot\frac{x+3}{3x^2}\)

\(B=\frac{-x^2-3x-9+x\left(x+3\right)}{\left(x+3\right)^2}\cdot\frac{x+3}{3x^2}\)

\(B=\frac{-9}{\left(x+3\right)^2}\cdot\frac{x+3}{3x^2}\)

\(B=-\frac{3}{x\left(x+3\right)}\)

c) Khi B = 1/2 thì: \(-\frac{3}{x\left(x+3\right)}=\frac{1}{2}\)

\(\Leftrightarrow x^2+3x=-6\Leftrightarrow x^2+3x+6=0\)

\(\Leftrightarrow\left(x^2+2\cdot\frac{3}{2}\cdot x+\frac{9}{4}\right)+\frac{15}{4}=0\)

\(\Rightarrow\left(x+\frac{3}{2}\right)^2=-\frac{15}{4}\left(ktm\right)\)

14 tháng 11 2021

Tỉ lệ \(x=\dfrac{y}{-5}\)

x             -4                 -1                2                   3

y             20                 5               -10               -15

1) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow BC^2=6^2+8^2=100\)

hay BC=10(cm)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(AH\cdot BC=AB\cdot AC\)

\(\Leftrightarrow AH\cdot10=6\cdot8=48\)

hay AH=4,8(cm)

 

14 tháng 12 2021

\(1,ĐK:x\ge2\\ PT\Leftrightarrow\sqrt{3x-6}+x-2-\left(\sqrt{2x-3}-1\right)=0\\ \Leftrightarrow\dfrac{3\left(x-2\right)}{\sqrt{3x-6}}+\left(x-2\right)-\dfrac{2\left(x-2\right)}{\sqrt{2x-3}+1}=0\\ \Leftrightarrow\left(x-2\right)\left(\dfrac{3}{\sqrt{3x-6}}-\dfrac{2}{\sqrt{2x-3}+1}+1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=2\left(tm\right)\\\dfrac{3}{\sqrt{3x-6}}-\dfrac{2}{\sqrt{2x-3}+1}+1=0\left(1\right)\end{matrix}\right.\)

Với \(x>2\Leftrightarrow-\dfrac{2}{\sqrt{2x-3}+1}>-\dfrac{2}{1+1}=-1\left(3x-6\ne0\right)\)

\(\Leftrightarrow\left(1\right)>0-1+1=0\left(vn\right)\)

Vậy \(x=2\)

14 tháng 12 2021

\(2,ĐK:x\ge-1\)

Đặt \(\left\{{}\begin{matrix}\sqrt{x+1}=a\\\sqrt{x^2-x+1}=b\end{matrix}\right.\left(a,b\ge0\right)\Leftrightarrow a^2+b^2=x^2+2\)

\(PT\Leftrightarrow2a^2+2b^2-5ab=0\\ \Leftrightarrow\left(a-2b\right)\left(2a-b\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}a=2b\\b=2a\end{matrix}\right.\)

Với \(a=2b\Leftrightarrow x+1=4x^2-4x+4\left(vn\right)\)

Với \(b=2a\Leftrightarrow4x+4=x^2-x+1\Leftrightarrow x^2-5x-3=0\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5+\sqrt{37}}{2}\left(tm\right)\\x=\dfrac{5-\sqrt{37}}{2}\left(tm\right)\end{matrix}\right.\)

Vậy ...

AH
Akai Haruma
Giáo viên
12 tháng 7 2023

Bạn nên chịu khó gõ đề ra khả năng được giúp sẽ cao hơn.

13 tháng 7 2023

Câu h của em đây nhé

h, ( 1 + \(\dfrac{3-\sqrt{3}}{\sqrt{3}-1}\)).(1 - \(\dfrac{3+\sqrt{3}}{\sqrt{3}+1}\))

\(\dfrac{\sqrt{3}-1+3-\sqrt{3}}{\sqrt{3}-1}\).\(\dfrac{\sqrt{3}+1-3-\sqrt{3}}{\sqrt{3}+1}\)

\(\dfrac{2}{\sqrt{3}-1}\).\(\dfrac{-2}{\sqrt{3}+1}\)

\(\dfrac{-4}{2}\)

= -2

25 tháng 9 2021

gấp lắm ạ. Mọi người giúp mình với ạ. Tối nay mình cần rồi.

19 tháng 5 2021

vẽ lại mạch ta có RAM//RMN//RNB

đặt theo thứ tự 3 R là a,b,c

ta có a+b+c=1 (1)

điện trở tương đương \(\dfrac{1}{R_{td}}=\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\) \(\Rightarrow I=\dfrac{U}{R_{td}}=9.\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\) với a,b,c>0

áp dụng bất đẳng thức cô si cho \(\dfrac{1}{a},\dfrac{1}{b},\dfrac{1}{c}\)  \(\Rightarrow\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge\dfrac{3}{\sqrt[3]{abc}}\ge\dfrac{3}{\left(\dfrac{a+b+c}{3}\right)}=\dfrac{9}{a+b+c}=9\)

\(\Leftrightarrow9\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\ge81\Leftrightarrow I\ge81\) I min =81 ( úi dồi ôi O_o hơi to mà vẫn đúng đá nhỉ)

dấu ''='' xảy ra \(\Leftrightarrow a=b=c\left(2\right)\)

từ (1) (2) \(\Rightarrow a=b=c=\dfrac{1}{3}\left(\Omega\right)\)

vậy ... (V LUN MẤT CẢ BUỔI TỐI R BÀI KHÓ QUÁ EM ĐANG ÔN HSG À )

 

 

19 tháng 5 2021

em ơi chụp cả cái mạch điện a xem nào sao chụp nó bị mất r

2 tháng 12 2021

Bài 3.

Định luật ll Niu-tơn:

\(\overrightarrow{F}+\overrightarrow{F_{ms}}=m\cdot\overrightarrow{a}\)

\(\Rightarrow F-F_{ms}=m\cdot a\)

Gia tốc vật:

\(a=\dfrac{F-F_{ms}}{m}=\dfrac{4,5-\mu mg}{m}=\dfrac{4,5-0,2\cdot1,5\cdot10}{1,5}=1\)m/s2

Vận tốc vật sau 2s:

\(v=a\cdot t=1\cdot2=2\)m/s