Cho hình trên chứng minh nửa chu vi tam giác ABC< EB+EA+EC< chu vi tam giác ABC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng tính chất của các đường phân giác BD và CE của tam giác ABC ta được:
+ AB/BC = AD/DC = 2/3 = 4/6
với t > 0
+
Theo giả thiết ta có: P A B C = A B + A C + B C = 15 t = 45 ⇒ t = 3
Vậy AB = 12( cm ); BC = 18( cm ); AC = 15( cm )
Áp dụng tính chất của các đường phân giác BD và CE của tam giác ABC ta được:
với t > 0
Theo giả thiết ta có: PABC = AB + AC + BC = 15t = 45 ⇒ t = 3
Vậy AB = 12( cm ); BC = 18( cm ); AC = 15( cm )
Áp dụng tính chất của các đường phân giác BD và CE của tam giác ABC ta được:
với t > 0
Theo giả thiết ta có: PABC = AB + AC + BC = 15t = 45 ⇒ t = 3
Vậy AB = 12( cm ); BC = 18( cm ); AC = 15( cm )
áp dụng đ/lý bất đẳng thức ta có: MA < MI + IA
=> MA + MB < MI + IA + MB
=> MA + MB < IB + IA (1)
tương tự ta có: IB < IC + BC
=> IB + IA < IC + BC + IA
=> IB + IA < AC + BC (2)
từ (1) và (2) => MA + MB < AC + BC (3)
tương tự ta cũng có: MA + MC < AB + BC (4)
MB + MC < AB + AC (5)
cộng theo vế (3) ; (4) ; (5) ta có:
MA + MB + MA + MC + MB + MC < AC + BC+ AB + BC + AB + AC
2( MA + MB + MC) < 2( AB + AC + BC)
MA + MB + MC < AB + AC + BC ( vì cùng chia 2 vế cho 2) (6)
áp dụng đ/lý bất đẳng thức tam giác ta có:
AB < MA + MB
AC < MA + MC
BC < MC + MB
cộng theo vế của các bất đẳng thức trên ta có:
AB + AC + BC < MA + MB + MA + MC + MC + MB
AB + AC + BC < 2( MA + MB + MC)
AB + AC + BC / 2 MA + MB + MC ( chia cả 2 vế cho 2) (7)
từ (6) và (7) => AB + AC + BC / 2< MA + MB + MC < AB + AC + BC
vậy MA + MA + MC lớn hơn nửa chu vi và nhỏ hơn chu vi tam giác ABC
Bài 1 :
Vì tam giác đó cân
=>
- Có 2 cạnh là 4m
- Có 2 cạnh là 9m
Mà theo bất đẳng thức tam giác , độ dài 1 cạnh bao nhờ cũng nhỏ hơn tổng độ dài 2 cạnh còn lại
=> Tam giác đó có 2 cạnh bằng 9m .
Chu vi tam giác đó là :
9 + 9 + 4 = 22 ( m)
Đáp số : 22m
Trong ΔAMB, ta có:
MA + MB > AB (bất đẳng thức tam giác) (1)
Trong ΔAMC, ta có:
MA + MC > AC (bất đẳng thức tam giác) (2)
Trong ΔBMC, ta có:
MB + MC > BC (bất đẳng thức tam giác) (3)
Cộng từng vế (1), (2) và (3), ta có:
MA + MB + MA + MC + MB + MC > AB + AC + BC
⇔ 2(MA + MB + MC) > AB + AC + BC
Vậy MA + MB + MC > (AB + AC + BC) / 2