K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 2 2020

oh no xin lỗi các bạn câu này không giải được

16 tháng 2 2020

tớ gửi nhưng không gửi được hình ảnh sorry các bạn nhé

áp dụng đ/lý bất đẳng thức ta có: MA < MI + IA

                                    => MA + MB < MI + IA + MB

                                   => MA + MB < IB + IA (1)

        tương tự ta có: IB < IC + BC

                        => IB + IA < IC + BC + IA

                       => IB + IA < AC + BC (2)

từ (1) và (2) => MA + MB < AC + BC (3)

tương tự ta cũng có: MA + MC < AB + BC (4)

                                 MB + MC < AB + AC (5)

cộng theo vế (3) ; (4) ; (5) ta có:

MA + MB + MA + MC + MB + MC < AC + BC+ AB + BC + AB + AC

2( MA + MB + MC) < 2( AB + AC + BC)

MA + MB + MC < AB + AC + BC ( vì cùng chia 2 vế cho 2) (6)

áp dụng đ/lý bất đẳng thức tam giác ta có:

AB < MA + MB

AC < MA + MC

BC < MC + MB

cộng theo vế của các bất đẳng thức trên ta có:

AB + AC + BC < MA + MB + MA + MC + MC + MB

AB + AC + BC < 2( MA + MB + MC)

AB + AC + BC / 2 MA + MB + MC ( chia cả 2 vế cho 2) (7)

từ (6) và (7) => AB + AC + BC / 2< MA + MB + MC < AB + AC + BC

vậy MA + MA + MC lớn hơn nửa chu vi và nhỏ hơn chu vi tam giác ABC

18 tháng 1 2022

đéo bt làm thì đừng có thể hiện

 

 

9 tháng 3 2019

Bài 1 :

Vì tam giác đó cân 

=> 

  • Có 2 cạnh là 4m
  • Có 2 cạnh là 9m

Mà theo bất đẳng thức tam giác , độ dài 1 cạnh bao nhờ cũng nhỏ hơn tổng độ dài 2 cạnh còn lại

=> Tam giác đó có 2 cạnh bằng 9m .

Chu vi tam giác đó là :

9 + 9 + 4 = 22 ( m)

Đáp số : 22m

13 tháng 3 2019

Trong ΔAMB, ta có:

MA + MB > AB (bất đẳng thức tam giác) (1)

Trong ΔAMC, ta có:

MA + MC > AC (bất đẳng thức tam giác) (2)

Trong ΔBMC, ta có:

MB + MC > BC (bất đẳng thức tam giác) (3)

Cộng từng vế (1), (2) và (3), ta có:

MA + MB + MA + MC + MB + MC > AB + AC + BC

⇔ 2(MA + MB + MC) > AB + AC + BC

Vậy MA + MB + MC > (AB + AC + BC) / 2 

19 tháng 9 2018

Trong ΔABD, ta có:

AD < AB + BD (bất đẳng thức tam giác) (1)

Trong ΔADC, ta có:

AD < AC + DC (bất đẳng thức tam giác) (2)

Cộng từng vế (1) và (2), ta có:

2AD < AB + BD + AC + DC ⇔ 2AD < AB + AC + BC

Vậy AD < (AB + AC + BC) / 2 .

19 tháng 9 2023

Áp dụng quan hệ giữa ba cạnh của tam giác ABD, ta có: AD < AB + BD

Áp dụng quan hệ giữa ba cạnh của tam giác ACD, ta có: AD < CD + AC

\(\Rightarrow AD + AD < AB+BD+CD+AC\)

\(\Rightarrow 2AD<AB+BC+AC\) ( vì \(DB+DC=BC\))

\(\Rightarrow\) 2AD < Chu vi tam giác ABC hay AD < (Chu vi tam giác ABC) : 2

Vậy AD nhỏ hơn nửa chu vi tam giác ABC.

13 tháng 5 2015

A B C M I

ap dụng đinh lí bất dẳng thức tam giác ta cóMA<MI+IA

 TA cộng cả 2 vế trên với MB ta có MA+MB<MI+MB+IA

                                                        MA+MB<  IB +IA (1)

 tương tự ta có                              IB<IC+BC

Cộng cả hai vế trên vớiIA ta có IB+IA<IC+IA+BC

                                                  IB+IA<AC+     BC(2)

từ (1) và (2) ta được MA+MB<IA+IB<AC+BC

                               hay MA+MB<AC+BC (3)

Tương tự như vậy ta cũng có MA+MC<AB+BC(4)

                                               MB+MC<AB+AC (5)

CÔng theo vế của (3),(4).(5) ta được

MA+MB+MA+MC+MB+MC<AC+BC+AB+BC+AB+AC

                  2(MA+MB+MC)<2(AB+AC+BC)

                  MA+MB+MC<AC+AB+BC(cùng chia  2 vế cho 2)(**)

Aps dụng đ/l bất đẳng thức tam giác ta có 

    AB<MB+MA

   AC<MA+MC

   BC<MC+MB

cộng theo vế của các bất đảng thức trên ta được

AB+AC+BC<MB+MA+MA+MC+MC+MB

AB+AC+BC<2(MA+MB+MC)

AB+AC+BC/2<MA+MB+MC (CHIA CẢ HAI VẾ CHO 2) (*)

TỪ (**) VÀ (*) ta suy ra 

AB+AC+BC/2<MA+MB+MC<AB+AC+BC

vậy MA+MB+MC lớn hơn nửa chu vi và nhỏ hơn chu vi cua tam giác ABC

 

 

 

 

 

18 tháng 3 2017

CM: MA+MC<AB+BC(4) hộ cái