cho tam giác ABC vuông tại A. Tính độ dài Các cạnh của tam giác biết AB:BC=3:15 và chu vi của tam giác là 90 cm
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{AB}{BC}=\frac{5}{13}\)
coi AB là 5, BC là 13.
Áp dụng định lý Py - ta - go, ta có:
AB2 + AC2 = BC2
=> 52 + AC2 = 132
=> AC2 = 144
=> AC = 12
Vì chu vi của tam giác là 90 nên AB + AC + BC = 90
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\frac{AB}{5}=\frac{AC}{12}=\frac{BC}{13}=\frac{AB+AC+BC}{5+12+13}=\frac{90}{30}=3\)
\(\Rightarrow\hept{\begin{cases}AB=15\\AC=36\\BC=39\end{cases}}\)
a) Đặt độ dài cạnh AB là x (\(x > 0\))
Theo giả thiết ta có độ dài \(AC = AB + 2 = x + 2\)
Áp dụng định lý pitago trong tam giác vuông ta có
\(BC = \sqrt {A{B^2} + A{C^2}} = \sqrt {{x^2} + {{\left( {x + 2} \right)}^2}} = \sqrt {2{x^2} + 4x + 4} \)
b) Chu vi của tam giác là \(C = AB + AC + BC\)
\( \Rightarrow C = x + \left( {x + 2} \right) + \sqrt {2{x^2} + 4x + 4} = 2x + 2 + \sqrt {2{x^2} + 4x + 4} \)
Theo giả thiết ta có
\(\begin{array}{l}C = 24 \Leftrightarrow 2x + 2 + \sqrt {2{x^2} + 4x + 4} = 24\\ \Leftrightarrow \sqrt {2{x^2} + 4x + 4} = 22 - 2x\\ \Rightarrow 2{x^2} + 4x + 4 = {\left( {22 - 2x} \right)^2}\\ \Rightarrow 2{x^2} + 4x + 4 = 4{x^2} - 88x + 484\\ \Rightarrow 2{x^2} - 92x + 480 = 0\end{array}\)
\( \Rightarrow x = 6\) hoặc \(x = 40\)
Thay hai nghiệm vừa tìm được vào phương trình \(\sqrt {2{x^2} + 4x + 4} = 22 - 2x\) ta thấy chỉ có \(x = 6\) thỏa mãn phương trình
Vậy độ dài ba cạnh của tam giác là \(AB = 6;AC = 8\) và \(BC = 10\)(cm)
Bài 1:
a: AB+AC=75-45=30(cm)
b: AB=(30+4):2=17(cm)
=>AC=13cm
\(S=17\cdot13=221\left(cm^2\right)\)
Bài 2:
a: BC=67-47=20(cm)
b: \(S=\dfrac{15\cdot20}{2}=15\cdot10=150\left(cm^2\right)\)
đổi 500 cm = 5 m
Xét tam giác ABC vuông ta có :
Theo bài ra ta có \(\hept{\begin{cases}AB-AC=1\\AB+AC+BC=12\end{cases}}\Leftrightarrow\hept{\begin{cases}AB-AC=1\\AB+AC=7\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}2AB=8\\AC=AB-1\end{cases}}\Leftrightarrow\hept{\begin{cases}AB=4\\AC=3\end{cases}}\)
Ta có AB + AC = 4 + 3 = 7 m
Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow AC^2=10^2-6^2=64\)
hay AC=8(cm)
Chu vi của tam giác ABC là:
C=AB+AC+BC=6+8+10=24(cm)