Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow AC^2=10^2-6^2=64\)
hay AC=8(cm)
Chu vi của tam giác ABC là:
C=AB+AC+BC=6+8+10=24(cm)
4) ti lê canh huyen la: 52 + 122 = 132
ta có AB/5 =AC/12 = BC/13 =>AB=20;AC=48;BC=52
5) cac canh bang 20;48 ;52
la tg vuong vi 522 = 482+202.
( giai toan giup bạn )
Đề dễ thế này cũng nhờ làm hộ à!? :)))))))))
Tam giác ABC vuông tại A
Định lí Pytago: \(BC^2=AB^2+AC^2\)
Suy ra \(10^2=6^2+AC^2\)
=> AC= 8 (cm)
Chu vi tam giác ABC: AB+ BC+ AC= 6 +10 + 8=24 (cm)
Gọi các cạnh của tam giác lần lượt là `x,y,z (x,y,z \ne 0)`
Các cạnh của tam giác lần lượt tỉ lệ với `2:4:5`
Nghĩa là: `x/2=y/4=z/5`
Chu vi các cạnh của tam giác là `44 cm`
`-> x+y+z=44`
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
`x/2=y/4=z/5=(x+y+z)/(2+4+5)=44/11=4`
`=>`\(\left\{{}\begin{matrix}\dfrac{x}{2}=4\\\dfrac{y}{4}=4\\\dfrac{z}{5}=4\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=4\cdot2=8\\y=4\cdot4=16\\z=4\cdot5=20\end{matrix}\right.\)
Vậy, các cạnh của tam giác lần lượt là `8 cm, 16 cm, 20 cm.`
BC^2 = AC^2 + BA^2
= 8^2 + 6^2
= 64+36= 100
BC^2 = \(\sqrt{100}\)
⇒BC = 10
CHU VI HÌNH TAM GIÁC LÀ: 10+8+6=24(cm)
xét tam giác ΔABD vs ΔHBD cs
góc A = góc H = 90 độ
AD cạnh chung
góc B1 = góc B2
nên ΔABD = ΔHBD ( ch-gn)
xét ΔHDC cs góc H = 90 độ
⇒DH < DC ( do DC là cạnh huyền )
mà DH = DA ( ΔABD = ΔHBD )
nên DC > DA
Vuông tại A dễ vẽ thôi bn nên mk ko vẽ nữa :))
Áp dụng định lý Py ta go ta có :
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow10^2=6^2+AC^2\)
\(\Leftrightarrow100=36+AC^2\Leftrightarrow AC^2=100-36=84\)
\(\Leftrightarrow AC=8\)
Chu vi Tam giác ABC là
\(6+10+8=24\left(cm\right)\)
AC=AB.AB+BC.BC
=6.6+10.10
=36+100
=136
=11.6
Chu vi tam giác= AB=AC=BC=6+10+11=27
(Ko biết có làm đúng ko)
Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow AC^2=BC^2-AB^2=10^2-6^2=64\)
hay AC=8(cm)
Vậy: AC=8cm
Chu vi của tam giác ABC là:
C=AB+AC+BC=6+8+10=24(cm)
a. Áp dụng định lí Pi-ta-go vào tam giác ABC vuông, ta có
BC2=AB2+AC2
= 36 + 64 = 100
=> BC = 10 cm
chu vi tam giác ABC là: 36+64+100=200(cm)
\(\frac{AB}{BC}=\frac{5}{13}\)
coi AB là 5, BC là 13.
Áp dụng định lý Py - ta - go, ta có:
AB2 + AC2 = BC2
=> 52 + AC2 = 132
=> AC2 = 144
=> AC = 12
Vì chu vi của tam giác là 90 nên AB + AC + BC = 90
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\frac{AB}{5}=\frac{AC}{12}=\frac{BC}{13}=\frac{AB+AC+BC}{5+12+13}=\frac{90}{30}=3\)
\(\Rightarrow\hept{\begin{cases}AB=15\\AC=36\\BC=39\end{cases}}\)