Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án B
Vì A 1 ; 1 ; − 2 ∈ d nên phương trình của đường thẳng d là: x = 1 + 2 t y = 1 + 6 t z = − 2 + t
Đáp án C
Ta có n P → 1 ; 0 ; 0 ; n Q → 0 ; 1 ; − 1 suy ra n → = n P → ; n Q → = 0 ; 1 ; 1
Suy ra phương trình mặt phẳng cần tìm là: y + z − 5 = 0
Đáp án D
Gọi d = P ∩ Q ,d có VTCP là u → .
Khi đó u → = 1 ; − 1 ; 0 , 2 ; 0 ; 4 = − 4 ; − 4 ; 2 = − 2 2 ; 2 ; − 1 .
Mặt phẳng (R) qua A 1 ; 2 ; 3 , có VTCP là 2 ; 2 ; − 1 và đi qua điểm B ( − 1 2 ; − 1 2 ; 0 ) thuộc giao tuyến, (R) có phương trình là R : x − y + 1 = 0.
Đáp án D
Phương pháp :
Đường thẳng qua A song song với hai mặt phẳng (P); (Q) nhận là 1VTCP.
Cách giải : Ta có lần lượt là các VTPT của
Ta có :
là 1 VTCP của đường thẳng qua A và vuông góc với cả
Vậy phương trình đường thẳng cần tìm là:
Với t = -3 ta có đường thẳng đi qua điểm B(1;2;0) => phương trình đường thẳng cần tìm là :
x = 1 y = 2 z = t
Ta có:
Khi đó:
Suy ra (Q): 2y+3z-11=0