Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

có VTCP là
Mặt phẳng (P) có VTCP
Theo giả thiết d//(P) nên suy ra
Vậy đường thẳng d có một VTCP
nên loại các phương án A, C, D.
Chọn B.

Đáp án D
Phương pháp: Giả sử đường thẳng (d) cắt trục Oz tại điểm
Cách giải:
Giả sử đường thẳng (d) cắt trục Oz tại điểm

Phương pháp:
Đường thẳng d song song với cả hai mặt phẳng (P), (Q)

Chọn đáp án A
Mặt phẳng (Q) đi qua điểm A(1;-1;2) và song song với P : 2 x - y + z + 1 = 0 nên có phương trình:

Đáp án B
Vì A 1 ; 1 ; − 2 ∈ d nên phương trình của đường thẳng d là: x = 1 + 2 t y = 1 + 6 t z = − 2 + t
Đáp án D
Phương pháp :
Đường thẳng qua A song song với hai mặt phẳng (P); (Q) nhận
là 1VTCP.
Cách giải : Ta có
lần lượt là các VTPT của
Ta có :

Vậy phương trình đường thẳng cần tìm là:
Với t = -3 ta có đường thẳng đi qua điểm B(1;2;0) => phương trình đường thẳng cần tìm là :
x = 1 y = 2 z = t