Tính \(A=\frac{x-y}{x+y}\), biết \(x^2-2y^2=xy\left(y\ne0,x+y\ne0\right)\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^2-2y^2=xy\Leftrightarrow x^2-xy-2y^2=0\Leftrightarrow x^2+xy-2xy-2y^2=0\Leftrightarrow x\left(x+y\right)-2y\left(x+y\right)=0\Leftrightarrow\left(x-2y\right)\left(x+y\right)=0\)
Mà \(x+y\ne0\Rightarrow x-2y=0\Rightarrow x=2y\)
\(\Rightarrow A=\frac{2y-y}{2y+y}=\frac{y}{3y}=\frac{1}{3}\)
Từ đề bài \(\Rightarrow\)\(x^2-2y^2-xy=0\Leftrightarrow\left(x+y\right)\left(x-2y\right)=0\)
Mà \(x+y\ne0\Rightarrow x-2y=0\Rightarrow x=2y\)
\(\Rightarrow P=\frac{2y-y}{2y+y}=\frac{1}{3}\)
Vì \(x^2-2y^2=xy\)
\(\Leftrightarrow x^2-xy-y^2=0\)
\(\Leftrightarrow\left(x-y\right)^2-y\left(x+y\right)=0\)
\(\Leftrightarrow\left(x-y\right)\left(x+y\right)-y\left(x+y\right)=0\)
\(\Leftrightarrow\left(x+y\right)\left(x-2y\right)=0\)
Theo đề bài thì có :
\(x+y\ne0\)
\(\Rightarrow x-2y=0\)
\(\Leftrightarrow x=2y\)
Từ đó ta lại có :
\(P=\frac{2y-y}{2y+y}=\frac{y}{3y}=\frac{1}{3}\)
Vậy .......
Tính giá trị của biểu thức: \(A=\frac{x-y}{x+y}\)
biết \(x^2-2y^2=xy\) \(\left(y\ne0;x+y\ne0\right)\)
Ta có: \(x^2-2y^2=xy\)
\(\Leftrightarrow\)\(x^2-2y^2-xy=0\)
\(\Leftrightarrow\)\(\left(x^2-y^2\right)-\left(y^2+xy\right)=0\)
\(\Leftrightarrow\)\(\left(x-y\right)\left(x+y\right)-y\left(x+y\right)=0\)
\(\Leftrightarrow\)\(\left(x+y\right)\left(x-2y\right)=0\)
Vì \(x+y\ne0\)nên \(x-2y=0\)\(\Leftrightarrow\)\(x=2y\)
Vậy \(A=\frac{2y-y}{2y+y}=\frac{y}{3y}=\frac{1}{3}\)
<=> x+y+2=xy
<=> y+2=xy-x
<=> y+2=x(y-1)
<=> x= (y+2)/(y-1)=(y-1+3)/(y-1)= 1+ 3/(y-1)
Vậy, để x nguyên thì y-1 phải là ước của 3
=> y-1={-3; -1; 1; 3}
=> y={-2; 0; 2; 4}
=> x={0; -2; 4; 2}
Do x, y khác 0 nên các cặp x, y thỏa mãn là (4; 2) và (2; 4)
Ta có: \(x^2-2y^2=xy\)
\(\Leftrightarrow x^2-xy-2y^2=0\)
\(\Leftrightarrow x^2-2xy+xy-2y^2=0\)
\(\Leftrightarrow x\left(x-2y\right)+y\left(x-2y\right)=0\)
\(\Leftrightarrow\left(x-2y\right)\left(x+y\right)=0\)
Vì \(x+y\ne0\) nên x-2y=0
hay x=2y
Thay x=2y vào biểu thức \(A=\dfrac{x-y}{x+y}\), ta được:
\(A=\dfrac{2y-y}{2y+y}=\dfrac{y}{3y}=\dfrac{1}{3}\)
Vậy: \(A=\dfrac{1}{3}\)
Đặt \(\frac{x}{4}=\frac{y}{7}\) = k => x = 4k; y = 7k ( k khác 0)
Thay vào C ta được: \(C=\frac{\left(1+\sqrt{3}\right)\left(4k\right)^2.7k-\left(2-\sqrt{5}\right).4k.\left(7k\right)^2}{\left(4k\right)^3+\left(7k\right)^3}=\frac{\left(112.\left(1+\sqrt{3}\right)-196.\left(2-\sqrt{5}\right)\right).k^3}{407k^3}\)
\(C=\frac{112+112\sqrt{3}-392+196\sqrt{5}}{407}=\frac{112\sqrt{3} +196\sqrt{5}-280}{407}\)
Với đk trên ta có:
P = \(\frac{2}{x}-\left(\frac{x^2}{x^2+xy}+\frac{y^2-x^2}{xy}-\frac{y^2}{xy+y^2}\right).\frac{x+y}{x^2+xy+y^2}\)
\(=\frac{2}{x}-\left(\frac{x}{x+y}-\frac{\left(x-y\right)\left(x+y\right)}{xy}-\frac{y}{x+y}\right).\frac{x+y}{x^2+xy+y^2}\)
\(=\frac{2}{x}-\left(\frac{x-y}{x+y}-\frac{\left(x-y\right)\left(x+y\right)}{xy}\right).\frac{x+y}{x^2+xy+y^2}\)
\(=\frac{2}{x}-\frac{x-y}{xy}.\left(xy-\left(x+y\right)^2\right).\frac{1}{x^2+xy+y^2}\)
\(=\frac{2}{x}+\frac{x-y}{xy}\)
\(=\frac{x+y}{xy}\)
Ta có : x2 - 2y2 = xy
=> x2 - xy - 2y2 = 0
=> x2 + xy - 2xy - 2y2 = 0
=> x(x + y) - 2y(x + y) = 0
=> (x - 2y)(x + y) = 0
=> \(\orbr{\begin{cases}x-2y=0\\x+y=0\left(\text{loại}\right)\end{cases}\Rightarrow x=2y}\)
Thay x = 2y vào A ta có
\(A=\frac{x-y}{x+y}=\frac{2y-y}{2y+y}=\frac{y}{3y}=\frac{1}{3}\)