K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 2 2018

Ta có:    \(x^2-2y^2=xy\)

\(\Leftrightarrow\)\(x^2-2y^2-xy=0\)

\(\Leftrightarrow\)\(\left(x^2-y^2\right)-\left(y^2+xy\right)=0\)

\(\Leftrightarrow\)\(\left(x-y\right)\left(x+y\right)-y\left(x+y\right)=0\)

\(\Leftrightarrow\)\(\left(x+y\right)\left(x-2y\right)=0\)

Vì    \(x+y\ne0\)nên   \(x-2y=0\)\(\Leftrightarrow\)\(x=2y\)

Vậy    \(A=\frac{2y-y}{2y+y}=\frac{y}{3y}=\frac{1}{3}\)