tìm 2 số tự nhiên a và b biết a=b + 12 ,ƯCLN (a,b) = 12 và BCNN (a,b) = 144
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
TK
Ta có : ƯCLN(a,b) . BCNN(a,b) = a.b
⇒a.b=336.12=4032⇒a.b=336.12=4032
Vì ƯCLN (a,b) = 12
⇒{a=12kb=12q(ƯCLN(k,q)=1;k>q)⇒{a=12kb=12q(ƯCLN(k,q)=1;k>q)
Mà : a.b = 4032
⇒12k.12q=4032⇒(12.12)(k.q)=4032⇒12k.12q=4032⇒(12.12)(k.q)=4032
⇒144.k.q=4032⇒k.q=28⇒144.k.q=4032⇒k.q=28
+)
Ta có : ƯCLN(a,b) . BCNN(a,b) = a.b
⇒a.b=336.12=4032⇒a.b=336.12=4032
Vì ƯCLN (a,b) = 12
⇒{a=12kb=12q(ƯCLN(k,q)=1;k>q)⇒{a=12kb=12q(ƯCLN(k,q)=1;k>q)
Mà : a.b = 4032
⇒12k.12q=4032⇒(12.12)(k.q)=4032⇒12k.12q=4032⇒(12.12)(k.q)=4032
⇒144.k.q=4032⇒k.q=28⇒144.k.q=4032⇒k.q=28
+) ⇒{k=28q=1⇒{a=28.12b=1.12⇒{a=336b=12⇒{k=28q=1⇒{a=28.12b=1.12⇒{a=336b=12
+) ⇒{k=14q=2⇒{a=14.12b=12.2⇒{a=168b=24⇒{k=14q=2⇒{a=14.12b=12.2⇒{a=168b=24
+) ⇒{k=7q=4⇒{a=7.12b=4.12⇒{a=84b=48⇒{k=7q=4⇒{a=7.12b=4.12⇒{a=84b=48
Vậy a = 336 ; b = 12
a = 168 ; b = 24
a = 84 ; b = 48Ta có : ƯCLN(a,b) . BCNN(a,b) = a.b
⇒a.b=336.12=4032⇒a.b=336.12=4032
Vì ƯCLN (a,b) = 12
⇒{a=12kb=12q(ƯCLN(k,q)=1;k>q)⇒{a=12kb=12q(ƯCLN(k,q)=1;k>q)
Mà : a.b = 4032
⇒12k.12q=4032⇒(12.12)(k.q)=4032⇒12k.12q=4032⇒(12.12)(k.q)=4032
⇒144.k.q=4032⇒k.q=28⇒144.k.q=4032⇒k.q=28
+) ⇒{k=28q=1⇒{a=28.12b=1.12⇒{a=336b=12⇒{k=28q=1⇒{a=28.12b=1.12⇒{a=336b=12
+) ⇒{k=14q=2⇒{a=14.12b=12.2⇒{a=168b=24⇒{k=14q=2⇒{a=14.12b=12.2⇒{a=168b=24
+) ⇒{k=7q=4⇒{a=7.12b=4.12⇒{a=84b=48⇒{k=7q=4⇒{a=7.12b=4.12⇒{a=84b=48
Vậy a = 336 ; b = 12
a = 168 ; b = 24
a = 84 ; b = 48
Chúc bạn học tốt nha!
Giải :
Ta có : BCNN ( a , b ) = ƯCLN ( a , b ) = a . b
Vì ƯCLN ( a , b ) = 12 ; BCNN ( a , b ) = 336
=> 336 . 12 = a . b
=> a . b = 4032
Vì ƯCLN ( a , b ) = 12 => \(\hept{\begin{cases}a⋮12\\b⋮12\end{cases}}\)
=> \(\hept{\begin{cases}a=12.m\\n=12.n\end{cases}}\)( m , n \(\in\)N , ƯCLN ( m , n ) = 1 )
Thay a = 12 . m ; b = 12 . n vào a . b = 4032
Ta có : 12 . m . 12 . n = 4032
-> 144 . m . n = 4032
-> m . n = 4032 : 144
-> m . n = 28
Vì ƯCLN ( m , n ) = 1 . Ta có bảng :
m | 1 | 28 | 4 | 7 |
n | 28 | 1 | 7 | 4 |
a | 12 | 336 | 48 | 84 |
b | 336 | 12 | 84 | 48 |
Kết luận | Chọn | Chọn | Chọn | Chọn |
Vậy các cặp số tự nhiên ( a , b ) cần tìm là :
( 12 ; 336 ) ; ( 336 ; 12 ) ; ( 48 ; 84 ) ; ( 84 ; 48 )
Lời giải:
Ta có a.b = BCNN(a, b) . ƯCLN(a, b) = 336.12 = 4032.
Vì ƯCLN(a, b) = 12 nên a = 12a', b = 12b' (a', b' ∈ N), ƯCLN(a', b') = 1.
Ta có 12a'.12b' = 4032.
⇒ a'b' = 4032 : (12.12) = 28.
Do a' > b' và ƯCLN(a', b') = 1 nên
a' | 28 | 7 |
b' | 1 | 4 |
Suy ra
a | 336 | 84 |
b | 12 | 48 |
haizzzzzzzzzzzzzzzzz
chán quá mấy bn ơi
ai kb với mk ko?
ai fan conan ko
thick ko
các bn
chúc bn học gioi!!
Câu hỏi của Cặp đôi ngọt ngào - Toán lớp 6 - Học toán với OnlineMath
Tham khảo!
Câu hỏi của Cặp đôi ngọt ngào - Toán lớp 6 - Học toán với OnlineMath
Tham khảo!
Trả lời :
Tham khảo :
Câu hỏi của Cặp đôi ngọt ngào - Toán lớp 6 - Học toán với OnlineMath
Link :
https://olm.vn/hoi-dap/detail/198244172905.html
~HT~
Ta có a.b = ƯCLN(a;b).BCNN(a;b) = 12.240 = 2880
Lại có ƯCLN(a;b) = 12
=> Đặt a = 12m ; b = 12n (ƯCLN(m;n) = 1 ; m > n)
Khi đó a.b = 2880
<=> 12m.12n = 2880
=> m.n = 20
Lại có ƯCLN(m;n) = 1 ; m > n ta được
m.n = 5.4 = 20.1
Lập bảng xét các trường hợp
m | 20 | 5 |
n | 1 | 4 |
a | 240 | 60 |
b | 12 | 48 |
Vậy các cặp số (a;b) cần tìm là (240;12) ; (60;48)
theo bài ra ta có :
a*b=[a,b]*(a,b)
a*b=240*12
a.b=2880
Vì (a,b)=12 nên a chia hết cho 12 , b chia hết cho 12
suy ra a=12*k,b=12.q (k,q thuộc N*)
ta lại có
a*b=2880
12*k*12*q=2880
144*k*q=2880
k*p=2880/144
k*q=20
vì k,p có vai trò như nhau nên ( k,q)=1
nếu k=4,q=5 thì a=48, b=60
nếu k=1,q=20 thì a =12, b =240
vậy a=48, b=60
a=60,b=48
a=12,b=240
a=240,b=12
\(ab=\left(a,b\right).\left[a,b\right]=12.144=1728\Rightarrow a=\frac{1728}{b}\).
\(a=b+12\Rightarrow\frac{1728}{b}=b+12\Rightarrow b=36\)(vì \(b\inℕ\))
\(b=36\Rightarrow a=48\).