3/2^2.4^2+5/4^2.6^2+7/6^2.8^2+...+17/16^2.18^2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\dfrac{3}{1^2.2^2}+\dfrac{7}{3^2.4^2}+\dfrac{11}{5^2.6^2}+\dfrac{15}{7^2.8^2}+\dfrac{19}{9^2.10^2}\)
\(A=\dfrac{1+2}{1^2.2^2}+\dfrac{3+4}{3^2.4^2}+\dfrac{5+6}{5^2.6^2}+\dfrac{7+8}{7^2.8^2}+\dfrac{9+10}{9^2.10^2}\)
\(A=\dfrac{1}{1.2^2}+\dfrac{1}{1^2.2}+\dfrac{1}{3.4^2}+\dfrac{1}{3^2.4}+\dfrac{1}{5.6^2}+\dfrac{1}{5^2.6}+...+\dfrac{1}{9^2.10}\)
\(A=\dfrac{1}{4}+\dfrac{1}{2}+\dfrac{1}{48}+\dfrac{1}{36}+\dfrac{1}{180}+\dfrac{1}{150}+....+\dfrac{1}{900}\)
\(\left\{{}\begin{matrix}\dfrac{1}{48}< \dfrac{3}{32}\\\dfrac{1}{36}< \dfrac{1}{32}\\........\\\dfrac{1}{900}< \dfrac{1}{32}\end{matrix}\right.\)
Nên \(A< \dfrac{1}{4}+\dfrac{1}{2}+\dfrac{1}{32}.8=1\)
\(LINH=\dfrac{3}{1^2.2^2}+\dfrac{7}{3^2.4^2}+\dfrac{11}{5^2.6^2}+\dfrac{15}{7^2.8^2}+\dfrac{19}{9^2.10^2}\)
\(LINH=\dfrac{1+2}{1^2.2^2}+\dfrac{3+4}{3^2.4^2}+\dfrac{5+6}{5^2.6^2}+\dfrac{7+8}{7^2.8^2}+\dfrac{9+10}{9^2.10^2}\)
\(LINH=\dfrac{1}{1^2.2^2}+\dfrac{2}{1^2.2^2}+\dfrac{3}{3^2.4^2}+\dfrac{4}{3^2.4^2}+\dfrac{5}{5^2.6^2}+\dfrac{6}{5^2.6^2}+\dfrac{7}{7^2.8^2}+\dfrac{8}{7^2.8^2}+\dfrac{9}{9^2.10^2}+\dfrac{10}{9^2.10^2}\)
\(LINH=\dfrac{1}{1.2^2}+\dfrac{1}{1^2.2}+\dfrac{1}{3.4^2}+\dfrac{1}{3^2.4}+\dfrac{1}{5.6^2}+\dfrac{1}{5^2.6}+\dfrac{1}{7.8^2}+\dfrac{1}{7^2.8}+\dfrac{1}{9.10^2}+\dfrac{1}{9^2.10}\)\(LINH=\dfrac{1}{4}+\dfrac{1}{2}+\dfrac{1}{48}+\dfrac{1}{36}+\dfrac{1}{180}+\dfrac{1}{150}+\dfrac{1}{448}+\dfrac{1}{392}+\dfrac{1}{900}+\dfrac{1}{810}\)Vì:
\(\left\{{}\begin{matrix}\dfrac{1}{48}< \dfrac{1}{32}\\\dfrac{1}{36}< \dfrac{1}{32}\\...............\\\dfrac{1}{810}< \dfrac{1}{32}\end{matrix}\right.\)
Nên:
\(\dfrac{1}{48}+\dfrac{1}{36}+.....+\dfrac{1}{810}< \dfrac{1}{32}+\dfrac{1}{32}+....+\dfrac{1}{32}\)
\(\Rightarrow\dfrac{1}{48}+\dfrac{1}{36}+....+\dfrac{1}{810}< \dfrac{1}{32}.8=\dfrac{1}{4}\)
Nên:
\(LINH=\dfrac{1}{4}+\dfrac{1}{2}+\dfrac{1}{48}+\dfrac{1}{36}+....+\dfrac{1}{810}< \dfrac{1}{4}+\dfrac{1}{2}+\dfrac{1}{4}=1\)
Nên \(LINH< 1\left(đpcm\right)\)
A=\(2^2-9^3+4^{-2}.16-2.5^2\)
\(=4-729+1-50=-774\)
B=\(\left(2^3.2\right).\dfrac{1}{2}+3^{-2}.3^2-7.1+5\)
\(B=2^4.\dfrac{1}{2}+1-7+5=8+1-7+5=7\)
C = 2-3 + (52)3.5-3 + 4-3.16 - 2.32 - 105.(\(\dfrac{24}{51}\))0
C = \(\dfrac{1}{8}\) + 56.5-3 + 4-3.42 - 2.9 - 105.1
C = \(\dfrac{1}{8}\) + 53 + \(\dfrac{1}{4}\) - 18 - 105
C = (\(\dfrac{1}{8}\) + \(\dfrac{1}{4}\)) - (105 - 125 + 18)
C = \(\dfrac{3}{8}\) - (-20 + 18)
C = \(\dfrac{3}{8}\) + 2
C = \(\dfrac{19}{8}\)
đăng ít thôi bạn đăng nhiều thế mới nhìn vào đã thấy chóng mặt huống chi là giải
Thế thì đừng có mà nhìn người ta không biết thì phải hỏi chứ sao đâu có quan trọng là ít hay nhiều đâu
1. 25 : 5,7 = 250/57
2. 30:2.8.4 = 480
3. 20:2^2.14= 70
4. 125:5^3.170= 170
5. 64:2^5.30.4=240
6. (25:5^2.30): 15.7=14
bạn à! Nhiều quá mình ko làm hết được. sorry nha.^-^
a: \(=6-\dfrac{2}{3}+\dfrac{1}{2}-5-\dfrac{5}{3}+\dfrac{3}{2}-3+\dfrac{7}{3}-\dfrac{5}{2}\)
\(=\left(6-5-3\right)+\left(-\dfrac{2}{3}-\dfrac{5}{3}+\dfrac{7}{3}\right)+\left(\dfrac{1}{2}+\dfrac{3}{2}-\dfrac{5}{2}\right)\)
\(=-2-\dfrac{1}{2}=-\dfrac{5}{2}\)
b: \(=\dfrac{2^{10}\cdot3^8-2^{10}\cdot3^9}{2^{10}\cdot3^8+2^8\cdot3^8\cdot2^2\cdot5}=\dfrac{2^{10}\cdot3^8\cdot\left(-2\right)}{2^{10}\cdot3^8\left(1+5\right)}=\dfrac{-2}{6}=-\dfrac{1}{3}\)