Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có : A=2+2^2+2^3+...+2^2010 chia ra thành các nhóm , mỗi nhóm có 2 số hạng
A=(2+2^2)+(2^3+2^4)+...+(2^2009+2^2010)
A= 2(1+2)+2^3(1+2)+...+2^1009(1+2)
A=2.3+2^3.3+...+2^2009.3
A=3(2+2^3+...+2^2009) chia hết cho 3
phần b tương tự
đây lak toán lớp 6=>ông hok lớp 6 , lừa tui dễ lắm hả???
#G2k6#
\(A=2+2^2+2^3+....+2^{2009}+2^{2010}\)
\(A=\left(2+2^2\right)+\left(2^3+2^4\right)+.....+\left(2^{2009}+2^{2010}\right)\)
\(A=2\left(1+2\right)+2^3\left(1+2\right)+....+2^{2009}.\left(1+2\right)\)
\(A=2.3+2^3.3.....+2^{2009}.3\)
\(A=3\left(2+2^3+....+2^{2009}\right)⋮3\)
1)\(2^3\cdot37-2^3\cdot63-10=2^3\left(37-63\right)-10=8\cdot-26-10\)=-218
2)\(2^3+2^2+2^4=2^2\left(1+2+4\right)=4\cdot7=28\)
3)\(5^3-5=5\left(5^2-1\right)=5\cdot24=120\)
4)\(3+3^2+3^4=3\left(1+3+3^3\right)=3\cdot13=39\)
5)\(x^{n+1}-x^n=x^n\left(x-1\right)\)
A=1+3/2^3+4/2^4+5/2^5+...100/2^100
1/2*A = 1/2 + 3/2^4 + 4/2^5 +....+ 99/2^100 + 100/2^101
A- A/2 = 1/2A =1/2 + 3/2^3 + 1/2^4 +...+1/2^100 - 100/2^101
= [1/2+1/2^2 +1/2^3 +...+1/2^100] -100/2^101 (Do 3/2^3 = 1/2^2 +1/2^3)
=[1-(1/2)^101]/(1-1/2) -100/2^101
=(2^101 -1)/2^100 - 100/2^101
=> A = (2^101 -1)/2^99 - 100/2^100
Bạn ơi khó hiểu quá bạn giải chi tiết hơn giúp mình nhé mình sẽ k cho bạn 2 cái nhé
\(A=\frac{1}{2!}+\frac{2}{3!}+\frac{3}{4!}+...+\frac{9}{10!}\)
\(A=\frac{2-1}{2!}+\frac{3-1}{3!}+\frac{4-1}{4!}+...+\frac{10-1}{10!}\)
\(A=\frac{2}{2!}-\frac{1}{2!}+\frac{3}{3!}-\frac{1}{3!}+...+\frac{10}{10!}-\frac{1}{10!}\)
\(A=\frac{1}{1!}-\frac{1}{2!}+\frac{1}{2!}-\frac{1}{3!}+\frac{1}{3!}+...+\frac{1}{9!}-\frac{1}{10!}\)
\(A=1-\frac{1}{10!}\)
\(\Rightarrow A< 1\left(đpcm\right)\)
k có j bn bè nên thật tình giúp nhau mà, đúng cho mk chứ hjhj
9x2 - 4y2 = (3x)2 - (2y)2 =(3x+2y)(3x-2y) =0
mà 3x-2y =0 => 9x2 -4y2 = 0
- Về phần so sánh hai lũy thừa thi bạn phải làm thế nào cho nó cùng cơ số hoặc cùng số mũ. Sau đó áp dụng quy tắc
Với \(a>b\Rightarrow a^m>b^m\) và ngược lại với a < b (đối với cùng số mũ) hoặc Với \(m>n\Rightarrow a^m>a^n\) và ngược lại với m < n (đối với cùng cơ số)
- Tiếp theo,về dạng: \(A=2+2^2+2^3+...+2^{900}\). Bạn có thấy tất cả cơ số đều là 2 đúng không? Vì chúng ta nhân tất cả cho 2. Được: \(2A=2^2+2^3+2^4+...+2^{901}\)
Sau đó lấy \(2A-A\) được: \(A=2^{901}-2\) (Do 2A - A = A)
Các dạng khác làm tương tự!