Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: a chia 2 dư 1 => a + 1 chia hết cho 2
a chia 3 dư 2 => a + 1 chia hết cho 3
a chia 4 dư 3 => a + 1 chia hết cho 4
a chia 5 dư 4 => a + 1 chia hết cho 5
a chia 6 dư 5 => a + 1 chia hết cho 6
a chia 10 dư 9 => a + 1 chia hết cho 10
và a nhỏ nhất
=> a + 1 \(\in\) BCNN(2,3,4,5,6,10)
2 = 2 ; 3 = 3 ; 4 = 22 ; 5 = 5 ; 6 = 2.3 ; 10 = 2.5
=> BCNN(2,3,4,5,6,10) = 22.3.5 = 60
=> a + 1 = 60 => a = 60 - 1 => a = 59
Vậy a = 59
Số tự nhiên a chia cho 3 dư 1, chia cho 4 dư 2, chia cho 5 dư 3, chia cho 6 dư 4 => a + 2 chia hết cho 3, 4, 5, 6
=> a + 2 là BC(3;4;5;6)
Ta có BCNN(3;4;5;6) = 60
=> a + 2 chia hết cho 60
=> \(a+2\in\left\{0;60;120;180;240;300;360;420;480;540;...\right\}\)
=> \(a\in\left\{58;118;178;238;298;358;418;538;...\right\}\)
Trong các số trên thì số bé nhất chia hết cho 11 là 418.
Vậy số cần tìm là 418
ta có :
a - 1 sẽ chia hết tất cả
a chia 5 dư 4 và chia 2 dư 1 , vậy tận cùng là 9 .
ta có thể áp dụng cách tìm BCNN vao bài này .
nếu các số đã cho từng đôi 1 là một đôi nguyên tố cùng nhau thì BCNN của chúng là tích của các số ấy :
1 x 2 x 3 x 4 x 5 x 6 x 7 x 8 x 9 = 2519
nhé !
đáp án là 59 nha!
Trình bày rõ ràng được không bn?