Giải BPT sau
\(x+1\sqrt{x^2-4x+1}\ge3\sqrt{x}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐKXĐ: \(x\ge1\)
\(\Leftrightarrow4\sqrt{2x^2-10x+16}-4x+12-4\sqrt{x-1}\le0\)
\(\Leftrightarrow4\sqrt{2x^2-10x+16}-5x+9+x+3-4\sqrt{x-1}\le0\)
\(\Leftrightarrow\frac{16\left(2x^2-10x+16\right)-\left(5x-9\right)^2}{4\sqrt{2x^2-10x+16}+5x-9}+\frac{\left(x+3\right)^2-16\left(x-1\right)}{x+3+4\sqrt{x-1}}\le0\)
\(\Leftrightarrow\frac{7\left(x-5\right)^2}{4\sqrt{2x^2-10x+16}+5x-9}+\frac{\left(x-5\right)^2}{x+3+4\sqrt{x-1}}\le0\)
\(\Leftrightarrow\left(x-5\right)^2=0\Rightarrow x=5\)
Vậy BPT có nghiệm duy nhất \(x=5\)
Đặt \(x^2-3x+3=t>0\)
\(\sqrt{t}+\sqrt{t+3}\ge3\)
\(\Leftrightarrow2t+3+2\sqrt{t^2+3t}\ge9\)
\(\Leftrightarrow\sqrt{t^2+3t}\ge3-t\)
- Với \(t>3\Rightarrow\left\{{}\begin{matrix}VT>0\\VP< 0\end{matrix}\right.\) BPT luôn đúng
- Với \(t\le3\)
\(\Leftrightarrow t^2+3t\ge t^2-6t+9\Rightarrow t\ge1\)
Vậy nghiệm của BPT là \(t\ge1\Leftrightarrow\sqrt{x^2-3x+3}\ge1\)
\(\Leftrightarrow x^2-3x+2\ge0\Rightarrow\left[{}\begin{matrix}x\le1\\x\ge2\end{matrix}\right.\)
ĐKXĐ: \(-2\le x\le3\)
\(\Leftrightarrow3x^3+3x^2-12x-12+x+4-3\sqrt{x+2}+5-x-3\sqrt{3-x}\ge0\)
\(\Leftrightarrow\left(x^2-x-2\right)\left(3x+6\right)+\frac{x^2-x-2}{x+4+3\sqrt{x+2}}+\frac{x^2-x-2}{5-x+3\sqrt{3-x}}\ge0\)
\(\Leftrightarrow\left(x^2-x-2\right)\left[3\left(x+2\right)+\frac{1}{x+4+3\sqrt{x+2}}+\frac{1}{5-x+3\sqrt{3-x}}\right]\ge0\)
\(\Leftrightarrow x^2-x-2\ge0\)
\(\Rightarrow\left[{}\begin{matrix}-2\le x\le-1\\2\le x\le3\end{matrix}\right.\)
ĐK: \(x\ge1;x\le-2\)
\(\sqrt{x^2-1}+\sqrt{x^2-x}\le\sqrt{x^2+x-2}\)
\(\Leftrightarrow2x^2-x-1+2\sqrt{\left(x^2-1\right)\left(x^2-x\right)}\le x^2+x-2\)
\(\Leftrightarrow x^2-2x+1+2\sqrt{\left(x^2-1\right)\left(x^2-x\right)}\le0\)
\(\Leftrightarrow\left(x-1\right)^2+2\sqrt{\left(x^2-1\right)\left(x^2-x\right)}\le0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-1=0\\\left(x^2-1\right)\left(x^2-x\right)=0\end{matrix}\right.\)
\(\Leftrightarrow x=1\left(tm\right)\)
Vậy bất phương trình có nghiệm \(x=1\)
ĐKXĐ: \(x\ge\frac{1}{4}\)
\(\sqrt{5x+1}\le3\sqrt{x}+\sqrt{4x-1}\)
\(\Leftrightarrow5x+1\le9x+4x-1+6\sqrt{4x^2-x}\)
\(\Leftrightarrow3\sqrt{4x^2-x}\ge1-4x\)
Do \(x\ge1\Rightarrow\left\{{}\begin{matrix}1-4x\le0\\\sqrt{4x^2-x}\ge0\end{matrix}\right.\) \(\Rightarrow\) BPT luôn đúng
Vậy nghiệm của BPT là \(x\ge\frac{1}{4}\)
b/ ĐKXĐ: \(x\ge4\)
\(\Leftrightarrow\sqrt{2\left(x^2-16\right)}+x-3>7-x\)
\(\Leftrightarrow\sqrt{2\left(x^2-16\right)}>10-2x\)
- Với \(x>5\Rightarrow\left\{{}\begin{matrix}VT\ge0\\VP< 0\end{matrix}\right.\) BPT luôn đúng
- Với \(x\le5\) bình phương 2 vế:
\(2\left(x^2-16\right)>4\left(x-5\right)^2\)
\(\Leftrightarrow x^2-20x+66< 0\)
\(\Rightarrow10-\sqrt{34}< x< 10+\sqrt{34}\)
Vậy nghiệm của BPT là \(x>10-\sqrt{34}\)
Mình nghĩ là thế này
Ta có: x2+1>0 ∀xϵR
x2+2x+3=(x+1)2+1>0 ∀xϵR
x2+4x+5=(x+2)2+1 >0 ∀xϵR
nên \(\sqrt{x^2+1}+2\sqrt{x^2+2x+3}\ge3\sqrt{x^2+4x+5}\)
\(\Leftrightarrow\sqrt{x^2+1}+2\sqrt{\left(x+1\right)^2+1}\ge3\sqrt{\left(x+2\right)^2+1}\)
\(\Leftrightarrow x+1+2\left(x+1\right)+2\ge3\left(x+2\right)+3\)
\(\Leftrightarrow x+3+2x+2\ge3x+6+3\)
\(\Leftrightarrow3x+5\ge3x+9\Leftrightarrow0x\ge4\) (vô nghiệm)
Vậy S=∅
Đặt \(\left\{{}\begin{matrix}\sqrt{x^2+1}=a>0\\\sqrt{x^2+2x+3}=b>0\end{matrix}\right.\)
\(a+2b\ge3\sqrt{2b^2-a^2}\)
\(\Leftrightarrow a^2+4b^2+4ab\ge18b^2-9a^2\)
\(\Leftrightarrow5a^2+2ab-7b^2\ge0\)
\(\Leftrightarrow\left(a-b\right)\left(5a+7b\right)\ge0\)
\(\Leftrightarrow a-b\ge0\) (do \(5a+7b>0\))
\(\Leftrightarrow a\ge b\Leftrightarrow\sqrt{x^2+1}\ge\sqrt{x^2+2x+3}\)
\(\Leftrightarrow x^2+1\ge x^2+2x+3\Leftrightarrow x\le-1\)
Vậy nghiệm của BPT là \(x\le-1\)
ĐKXĐ: \(x\ge3\)
\(\sqrt{x-1}>\sqrt{x-2}+\sqrt{x-3}\)
\(\Leftrightarrow x-1>2x-5+2\sqrt{x^2-5x+6}\)
\(\Leftrightarrow4-x>2\sqrt{x^2-5x+6}\)
\(\Leftrightarrow\left\{{}\begin{matrix}4-x\ge0\\\left(4-x\right)^2>4\left(x^2-5x+6\right)\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\le4\\3x^2-12x+8< 0\end{matrix}\right.\)
\(\Rightarrow\dfrac{6-2\sqrt{3}}{3}< x< \dfrac{6+2\sqrt{3}}{3}\)
Kết hợp ĐKXĐ \(\Rightarrow3\le x< \dfrac{6+2\sqrt{3}}{3}\)