Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ \(x^2-2x-1< 0\)
\(\Leftrightarrow\left(x-1\right)^2< 2\)
\(\Leftrightarrow-\sqrt{2}< x-1< \sqrt{2}\)
\(\Leftrightarrow1-\sqrt{2}< x< 1+\sqrt{2}\)
b/ \(2x^2-6x+5=\left(2x^2-\frac{2.\sqrt{2}.x.3}{\sqrt{2}}+\frac{9}{2}\right)+\frac{1}{2}=\left(\sqrt{2}x-\frac{3}{\sqrt{2}}\right)^2+\frac{1}{2}>0\)
Câu 2 tự làm nhé.
\(x^2-2x-1< 0\)
\(\left(x-2\right)x-1< 0\)
\(\left(x-2\right)x\le1\)
\(\Leftrightarrow1-\sqrt{2}< x< 1+\sqrt{2}\)
\(A=3\sqrt{8}-\sqrt{50}-\sqrt{\sqrt{2}-1}\)
\(\Leftrightarrow6\sqrt{2}-5\sqrt{2}-\sqrt{\sqrt{2}-1}\)
\(\Leftrightarrow\sqrt{2}-\sqrt{\sqrt{2}-1}\)
\(B=2.\dfrac{2}{x-1}.\sqrt{\dfrac{x^2-2x+1}{4x^2}}\)
\(\Leftrightarrow\)\(\dfrac{2}{x-1}.\dfrac{\sqrt{x^2-2x+1}}{2x}\)
\(\Leftrightarrow\)\(\dfrac{2}{x-1}.\dfrac{\sqrt{\left(x-1\right)^2}}{x}\)
\(\Leftrightarrow\)\(\dfrac{2}{x-1}.\dfrac{x-1}{x}\)
\(\Leftrightarrow\)\(2.\dfrac{1}{x}\)
\(\Leftrightarrow\)\(\dfrac{2}{x}\)
bài 2
ta có \(\left(\sqrt{8a^2+1}+\sqrt{8b^2+1}+\sqrt{8c^2+1}\right)^2\)
\(=\left(\sqrt{a}.\sqrt{\frac{8a^2+1}{a}}+\sqrt{b}.\sqrt{\frac{8b^2+1}{b}}+\sqrt{c}.\sqrt{\frac{8c^2+1}{c}}\right)^2\)\(=\left(A\right)\)
Áp dụng bất đẳng thức Bunhiacopxki ta có;
\(\left(A\right)\le\left(a+b+c\right)\left(8a+\frac{1}{a}+8b+\frac{1}{b}+8c+\frac{8}{c}\right)\)
\(=\left(a+b+c\right)\left(9a+9b+9c\right)=9\left(a+b+c\right)^2\)
\(\Rightarrow3\left(a+b+c\right)\ge\sqrt{8a^2+1}+\sqrt{8b^2+1}+\sqrt{8c^2+1}\)(đpcm)
Dấu \(=\)xảy ra khi \(a=b=c=1\)
ĐKXĐ: \(-1\le x\le7\)
Ta có: \(VT\le\sqrt{2\left(x+1+7-x\right)}=4\)
\(VP=\left(x-3\right)^2+4\ge4\)
\(\Rightarrow VT\le VP\)
\(\Rightarrow\) BPT có nghiệm khi \(VT=VP\Leftrightarrow\left\{{}\begin{matrix}x+1=7-x\\x-3=0\end{matrix}\right.\) \(\Rightarrow x=3\)
\(\text{Đ}K:\text{ }x\ge\frac{1}{2}\)
\(1\Leftrightarrow2x+2\sqrt{x^2-2x+1}=2\Leftrightarrow x+\sqrt{\left(x-1\right)^2}=1\Leftrightarrow x+\left|x-1\right|=1\)
\(+,x\ge1\Rightarrow\left|x-1\right|=x-1\Rightarrow2x-1=1\Leftrightarrow x=1\left(tm\right)\)
\(+,x< 1\Rightarrow\left|x-1\right|=1-x\Rightarrow1=1\left(\text{đ}ung\right)\Rightarrow\frac{1}{2}\le\text{ }x< 1\)
\(Vaay:\frac{1}{2}\le x\le1\)