cho tam giac cân ABC(AB=AC).Từ B vẽ đường thẳng vuông góc với AB,từ C vẽ đường thẳng vuông goc với AC,chúng căt nhau ở E.Chứng minh rằng EA là tia phân giác của góc BEC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi F là giao điểm của ED và BC.
Trong tam giác BCE thì CI và BA là hai đường cao cắt nhau tại D, nên D là trực tâm
Suy ra AF vuông góc với BC.
Tam giác BDF có góc B = 450, nên góc BDF = 450. Mà góc ADE = góc BDF vì đối đỉnh do đó góc ADE = 450.
Suy ra tam giác ADE vuông cân tại A. Vậy AD = AE
Xét hai tam giác vuông ABD và ACD, ta có:
∠(ABD) =∠(ACD) =90o
Cạnh huyền AD chung
AB = AC (giả thiết)
⇒ ΔABD= ΔACD (cạnh huyền, cạnh góc vuông)
Suy ra: ∠(A1 ) =∠(A2) (hai góc tương ứng)
Suy ra AD là tia phân giác góc A
câu a Do tam giác AFE có AH vừa là tia phân giác vừa là đường cao nên AFE cân tại A
b. Do KB song song với FE mà tam giác AFE cân tại A nên AKB cũng cân tại A
do đó KF=KA-AF=AB-AE=BE do đó ta có đpcm
c. DO FM//KB mà M lại là trung điểm của BC nên F là trung điểm CK do đó ta có
\(AC+AB=AC+AK=AF-FC+AF+KF=2AF=2AE\)
a) Xét ΔABH vuông tại H và ΔACH vuông tại H có
AB=AC(ΔABC cân tại A)
AH chung
Do đó: ΔABH=ΔACH(Cạnh huyền-cạnh góc vuông)
Suy ra: BH=CH(Hai cạnh tương ứng)
Ta có hình vẽ
a)Xét tam giác BEMvà CFMta có
BM=CM(vì AM là trung tuyến ứng với BC)
Góc ABC=góc ACB(vì tam giác ABC cân ở A)
góc BEM=CFM(=90)
=>tam giácBEM=CFM(cạnh huyền-góc nhọn)
b) Từ câu a ta có Tam giác BEM=CFM
=>BE=FC(hai cạnh tương ứng)
ta có AE=AB-BE
AF=AC-CF
Mà AB=AC(tam giác ABC cân ở A)
BE=CF(như trên)
Vậy AE=AF
TRong 1 tam giác cân đường trung tuyến đồng thời là đường phân giác, đường trung trực,....
nên AM là phân giác góc A =>góc BAM=CAM
Xét tam giác AEI và AFI ta có
AI cạnh chung
AE=AF
góc BAM=CAM
=>tam giác AEM=AFM(c.g.c)
=>góc AIE=AIF(tương ứng)
Mà AIE+AIF=180do(kề bù)
=>AIE=AIF=180/2=90do
Vậy AM vuông góc với EF
c) theo câu a ta có tam giác BEM=CFM
=>ME=MF
vậy M thuộc phân giác góc A (1)
Xét tam giác vuông ABD và ACD có
AD cạnh chụng
góc BAM=CAM
=>tam giác ABD=ACD(cạnh huyền -góc nhọn)
=> DB=DC => D thuộc phân giác của góc A(2)
Từ (1) và (2) =>A;M;D thẳng hàng
ea la tia p/g cua BEC