K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Ta có: \(16\cdot A=\dfrac{16\cdot\left(4^{15}+1\right)}{4^{17}+1}\)

\(\Leftrightarrow16\cdot A=\dfrac{4^{17}+16}{4^{17}+1}=1+\dfrac{15}{4^{17}+1}\)

Ta có: \(16\cdot B=\dfrac{16\cdot\left(4^{12}+1\right)}{4^{14}+1}\)

\(\Leftrightarrow16\cdot B=\dfrac{4^{14}+16}{4^{14}+1}=1+\dfrac{15}{4^{14}+1}\)

Ta có: \(4^{17}+1>4^{14}+1\)

\(\Leftrightarrow\dfrac{15}{4^{17}+1}< \dfrac{15}{4^{14}+1}\)

\(\Leftrightarrow\dfrac{15}{4^{17}+1}+1< \dfrac{15}{4^{14}+1}+1\)

\(\Leftrightarrow16A< 16B\)

hay A<B

22 tháng 3 2023

4 mũ 15+1/4 mũ 17 +1= 1/16+1

4 mũ 12+1/ 4 mũ 14+1= 1/16+1

suy ra 1/17=1/17

suy ra A=B

nhớ tích cho tớ nhé

 

a) \(\dfrac{-1}{20}=\dfrac{-7}{140}\)

\(\dfrac{5}{7}=\dfrac{100}{140}\)

mà -7<100

nên \(-\dfrac{1}{20}< \dfrac{5}{7}\)

b) \(\dfrac{216}{217}< 1\)

\(1< \dfrac{1164}{1163}\)

nên \(\dfrac{216}{217}< \dfrac{1164}{1163}\)

c) \(\dfrac{-12}{17}=\dfrac{-180}{255}\)

\(\dfrac{-14}{15}=\dfrac{-238}{255}\)

mà -180>-238

nên \(-\dfrac{12}{17}>\dfrac{-14}{15}\)

d) \(\dfrac{27}{29}>0\)

\(0>-\dfrac{2727}{2929}\)

nên \(\dfrac{27}{29}>-\dfrac{2727}{2929}\)

6 tháng 5 2022

a) \(A=2A-A\)

\(=2\left(\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{2022}}\right)-\left(\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{2022}}\right)\)

\(=1+\dfrac{1}{2}+...+\dfrac{1}{2^{2021}}-\left(\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{2022}}\right)\)

\(=1-\dfrac{1}{2^{2022}}\)

b) \(B=\dfrac{20+15+12+17}{60}=\dfrac{4}{5}=1-\dfrac{1}{5}\)

\(A>B\left(Vì\left(\dfrac{1}{2^{2022}}< \dfrac{1}{5}\right)\right)\)

 

6 tháng 5 2022

a) A = 2 A − A = 2 ( 1 2 + 1 2 2 + . . . + 1 2 2022 ) − ( 1 2 + 1 2 2 + . . . + 1 2 2022 ) = 1 + 1 2 + . . . + 1 2 2021 − ( 1 2 + 1 2 2 + . . . + 1 2 2022 ) = 1 − 1 2 2022 b) B = 20 + 15 + 12 + 17 60 = 4 5 = 1 − 1 5 A > B ( V ì ( 1 2 2022 < 1 5 ) )

7 tháng 4 2022

\(a,\dfrac{13}{14}\cdot\dfrac{-7}{8}+\dfrac{-3}{2}\)

\(=-\dfrac{13}{16}+\dfrac{-3}{2}\)

\(=-\dfrac{13}{16}+\dfrac{-24}{16}\)

\(=-\dfrac{37}{16}\)

\(b,\dfrac{5}{17}+\dfrac{-15}{34}\cdot\dfrac{2}{5}\)

\(=\dfrac{5}{17}+\dfrac{-3}{17}\)

\(=\dfrac{2}{17}\)

\(c,\dfrac{1}{5}:\dfrac{1}{10}-\dfrac{1}{3}\cdot\left(\dfrac{6}{5}-\dfrac{2}{4}\right)\)

\(=2-\dfrac{1}{3}\cdot\dfrac{7}{10}\)

\(=2-\dfrac{7}{30}\)

\(=\dfrac{53}{30}\)

\(d,\dfrac{-3}{4}:\left(\dfrac{12}{-5}-\dfrac{-7}{10}\right)\)

\(=\dfrac{-3}{4}:\dfrac{-17}{10}\)

\(=\dfrac{15}{34}\)

7 tháng 4 2022

Ý a anh chép sai đề bài nên làm sai rùi kìa!~

2 tháng 4 2018

* Cách 1 : 

Ta có : 

\(16A=\frac{4^{17}+16}{4^{17}+1}=\frac{4^{17}+1+15}{4^{17}+1}=\frac{4^{17}+1}{4^{17}+1}+\frac{15}{4^{17}+1}=1+\frac{15}{4^{17}+1}\)

\(16B=\frac{4^{14}+16}{4^{14}+1}=\frac{4^{14}+1+15}{4^{14}+1}=\frac{4^{14}+1}{4^{14}+1}+\frac{15}{4^{14}+1}=1+\frac{15}{4^{14}+1}\)

Vì \(\frac{15}{4^{17}+1}< \frac{15}{4^{14}+1}\) nên \(1+\frac{15}{4^{17}+1}< 1+\frac{15}{4^{14}+1}\)

\(\Rightarrow\)\(16A< 16B\) hay \(A< B\)

Vậy \(A< B\)

Chúc bạn học tốt ~ 

2 tháng 4 2018

\(4^2.A=\frac{4^2\left(4^{15}+1\right)}{4^{17}+1}\)\(4^2.B=\frac{4^2\left(4^{12}+1\right)}{4^{14}+1}\)

=> \(4^2.A=\frac{4^{17}+4^2}{4^{17}+1}\);\(4^2.B=\frac{4^{14}+4^2}{4^{14}+1}\)

=> \(4^2.A=\frac{4^{17}+1+4^2-1}{4^{17}+1}\)\(4^2.B=\frac{4^{14}+1+4^2-1}{4^{14}+1}\)

=> \(4^2.A=\frac{4^{17}+1}{4^{17}+1}+\frac{4^2-1}{4^{17}+1}\)\(4^2.B=\frac{4^{14}+1}{4^{14}+1}+\frac{4^2-1}{4^{14}+1}\)

=> \(4^2.A=1+\frac{4^2-1}{4^{17}+1}\)\(4^2.B=1+\frac{4^2-1}{4^{14}+1}\)

Mà \(4^{17}>4^{14}\)

=> \(4^{17}+1>4^{14}+1\)

=> \(\frac{4^2-1}{4^{17}+1}< \frac{4^2-1}{4^{14}+1}\)

=> \(1+\frac{4^2-1}{4^{17}+1}< 1+\frac{4^2-1}{4^{14}+1}\)

=> \(4^2.A< 4^2.B\)

=> \(A< B\)

16 tháng 2 2022

\(\dfrac{1}{4444}< 1,\dfrac{3}{7}< 1,\dfrac{9}{5}>1,\dfrac{7}{3}>1,\dfrac{14}{15}< 1,\dfrac{16}{16}=1,\dfrac{14}{11}>1\)

16 tháng 2 2022

:)

Câu1:

a: \(=2008^2-\left(2008-2\right)\left(2008+2\right)\)

\(=2008^2-\left(2008^2-4\right)\)

=4

b: \(=\dfrac{23\cdot29\cdot10101}{23\cdot29\cdot10101}=1\)

c: \(=\dfrac{\left(2^{17}+5^{17}\right)\left(3^{14}-5^{12}\right)\cdot\left(16-16\right)}{15^2+5^3+67^7}\)

=0

8 tháng 7 2023

\(A=\dfrac{1}{3^1}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+...+\dfrac{1}{3^{2023}}\)

\(A=\dfrac{1}{3}.\left(1+\dfrac{1}{3^1}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{2022}}\right)\)

\(\Rightarrow3A=3.\dfrac{1}{3}.\left(1+\dfrac{1}{3^1}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{2022}}\right)\)

\(\Rightarrow3A=1+\dfrac{1}{3^1}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{2022}}\)

\(\Rightarrow3A-A=1+\dfrac{1}{3^1}+\dfrac{1}{3^2}+...\dfrac{1}{3^{2022}}-\left(\dfrac{1}{3^1}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+...+\dfrac{1}{3^{2023}}\right)\)

\(\Rightarrow2A=1+\dfrac{1}{3^1}+\dfrac{1}{3^2}+...\dfrac{1}{3^{2022}}-\dfrac{1}{3^1}-\dfrac{1}{3^2}-\dfrac{1}{3^3}-...\dfrac{1}{3^{2022}}-\dfrac{1}{3^{2023}}\)

\(\Rightarrow2A=1-\dfrac{1}{3^{2023}}\)

\(\Rightarrow A=\dfrac{1}{2}\left(1-\dfrac{1}{3^{2023}}\right)\)

\(\Rightarrow A=\dfrac{1}{2}-\dfrac{1}{2}.\dfrac{1}{3^{2023}}< \dfrac{1}{2}\)

\(B=\dfrac{1}{3}+\dfrac{1}{4}+\dfrac{1}{12}=\dfrac{4+3+1}{12}=\dfrac{8}{12}=\dfrac{2}{3}\)

mà \(\dfrac{2}{3}>\dfrac{1}{2}\) \(\left(\dfrac{2}{3}=\dfrac{4}{6}>\dfrac{1}{2}=\dfrac{3}{6}\right)\)

\(\Rightarrow A< B\)

 

 

8 tháng 7 2023

       A =      \(\dfrac{1}{3}\)\(\dfrac{1}{3^2}\)\(\dfrac{1}{3^3}\)+............+\(\dfrac{1}{3^{2023}}\)

     3A = 1+ \(\dfrac{1}{3}\) + \(\dfrac{1}{3^2}\) + \(\dfrac{1}{3^3}\)+...+\(\dfrac{1}{3^{2022}}\)

3A - A =  1 - \(\dfrac{1}{3^{2023}}\)

   2A   = 1 - \(\dfrac{1}{3^{2023}}\) < 1

      B =  \(\dfrac{1}{3}\) + \(\dfrac{1}{4}\)\(\dfrac{1}{12}\)

      B  = \(\dfrac{4}{12}\) + \(\dfrac{3}{12}\) + \(\dfrac{1}{12}\)

     B   = \(\dfrac{8}{12}\)

     B   = \(\dfrac{2}{3}\) ⇒ 2B = \(\dfrac{4}{3}\) > 1 

2A < 2B ⇒ A < B 

a) Ta có: \(\dfrac{x-2}{15}+\dfrac{x-3}{14}+\dfrac{x-4}{13}+\dfrac{x-5}{12}=4\)

\(\Leftrightarrow\dfrac{x-2}{15}-1+\dfrac{x-3}{14}-1+\dfrac{x-4}{13}-1+\dfrac{x-5}{12}-1=0\)

\(\Leftrightarrow\dfrac{x-17}{15}+\dfrac{x-17}{14}+\dfrac{x-17}{13}+\dfrac{x-17}{12}=0\)

\(\Leftrightarrow\left(x-17\right)\left(\dfrac{1}{15}+\dfrac{1}{14}+\dfrac{1}{13}+\dfrac{1}{12}\right)=0\)

mà \(\dfrac{1}{15}+\dfrac{1}{14}+\dfrac{1}{13}+\dfrac{1}{12}>0\)

nên x-17=0

hay x=17

Vậy: x=17

b) Ta có: \(\dfrac{x+1}{19}+\dfrac{x+2}{18}+\dfrac{x+3}{17}+...+\dfrac{x+18}{2}+18=0\)

\(\Leftrightarrow\dfrac{x+1}{19}+1+\dfrac{x+2}{18}+1+\dfrac{x+3}{17}+1+...+\dfrac{x+18}{2}+1=0\)

\(\Leftrightarrow\dfrac{x+20}{19}+\dfrac{x+20}{18}+\dfrac{x+20}{17}+...+\dfrac{x+20}{2}=0\)

\(\Leftrightarrow\left(x+20\right)\left(\dfrac{1}{19}+\dfrac{1}{18}+\dfrac{1}{17}+...+\dfrac{1}{2}\right)=0\)

mà \(\dfrac{1}{19}+\dfrac{1}{18}+\dfrac{1}{17}+...+\dfrac{1}{2}>0\)

nên x+20=0

hay x=-20

Vậy: x=-20