Chứng minh:
\(a^2+3\left(b^2+c^2+d^2\right)\ge2a\left(b+c+d\right)\forall a,b,c,d\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(1.\left(a-1\right)^2+\left(b-1\right)^2+\left(c-1\right)^2\ge0\)
\(\Rightarrow a^2+b^2+c^2+3\ge2\left(a+b+c\right)\)
Dấu "=" xảy ra khi \(a=b=c=1\)
\(2.\left(\frac{a}{2}-b\right)^2+\left(\frac{a}{2}-c\right)^2+\left(\frac{a}{2}-d\right)^2+\frac{a^2}{4}\ge0\)
\(\Leftrightarrow a^2+b^2+c^2+d^2\ge a\left(b+c+d\right)\)
Dấu "=" xảy ra khi \(a=b=c=0\)
\(3.\left(\frac{a}{2}-b\right)^2+\left(\frac{a}{2}-c\right)^2+\left(\frac{a}{2}-d\right)^2+\left(\frac{a}{2}-e\right)^2\ge0\)
\(\Leftrightarrow a^2+b^2+c^2+d^2+e^2\ge a\left(b+c+d+e\right)\)
Dấu "=" xảy ra khi \(\frac{a}{2}=b=c=d=e\)
4. Ta có: \(\left(a-b\right)^2\ge0\Rightarrow a^2+b^2\ge2ab\)
\(\left(c-d\right)^2\ge0\Rightarrow c^2+d^2\ge2cd\)
\(\Rightarrow a^2+b^2+c^2+d^2\ge2ab+2cd\)
\(\Rightarrow a^2+b^2+c^2+d^2+ab+cd\ge3ab+3cd\)
Ta lại có:\(\left(\sqrt{ab}-\sqrt{cd}\right)^2\ge0\Rightarrow ab+cd\ge2\sqrt{abcd}=2\)
\(\Rightarrow3\left(ab+cd\right)\ge6\)
\(\Rightarrow a^2+b^2+c^2+d^2+ab+cd\ge3\left(ab+cd\right)\ge6\)
Dấu "=" xảy ra khi \(\hept{\begin{cases}a=b\\c=d\\ab=cd\end{cases}}\Leftrightarrow a=b=c=d\)
a ) \(2a^2+b^2+c^2\ge2a\left(b+c\right)\)
\(\Leftrightarrow a^2-2ab+b^2+a^2-2ac+c^2\ge0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(a-c\right)^2\ge0\)
\(\LeftrightarrowĐPCM.\)
b ) \(a^2+2b^2+12\ge2b\left(3-a\right)\)
\(\Leftrightarrow a^2+2b^2+12\ge6b-2ab\)
\(\Leftrightarrow a^2+2ab+b^2+b^2-6b+9+3\ge0\)
\(\Leftrightarrow\left(a+b\right)^2+\left(b-3\right)^2+3\ge0\)
\(\LeftrightarrowĐPCM.\)
c ) \(a^2+b^2+c^2\ge2\left(a+b+c\right)-3\)
\(\Leftrightarrow a^2+2a+1+b^2+2b+1+c^2+2c+1\ge0\)
\(\Leftrightarrow\left(a+1\right)^2+\left(b+1\right)^2+\left(c+1\right)^2\ge0\)
\(\LeftrightarrowĐPCM.\)
a)theo cauchy ta có
\(\left\{{}\begin{matrix}a^2+b^2\ge2ab\\a^2+c^2\ge2ac\end{matrix}\right.\)
\(\Leftrightarrow2a^2+b^2+c^2\ge2a\left(b+c\right)\Rightarrowđpcm\)
câu b) xem lại đề , tôi nghĩ phải > 0 mới đúng
c) theo cauchy ta có
\(\left\{{}\begin{matrix}a^2+b^2\ge2ab\\a^2+c^2\ge2ac\\b^2+c^2\ge2bc\end{matrix}\right.\)
cộng lại, rút 2 đi suy ra đpcm
Áp dụng BĐT Bunhiacopxki:
\(\sqrt{\left(a^2+c^2\right)\left(b^2+c^2\right)}\ge\sqrt{\left(ac+bc\right)^2}=ac+bc\)
CMTT : \(\sqrt{\left(a^2+d^2\right)\left(b^2+d^2\right)}\ge ad+bd\)
Ta có :\(\sqrt{\left(a^2+c^2\right)\left(b^2+c^2\right)}+\sqrt{\left(a^2+d^2\right)\left(b^2+d^2\right)}\ge ac+bc+ad+bd=\left(a+b\right)\left(c+d\right)\)
Áp dụng BĐT Bunhiacopxki:
(�2+�2)(�2+�2)≥(��+��)2=��+��(a2+c2)(b2+c2)≥(ac+bc)2=ac+bc
CMTT : (�2+�2)(�2+�2)≥��+��(a2+d2)(b2+d2)≥ad+bd
Ta có :(�2+�2)(�2+�2)+(�2+�2)(�2+�2)≥��+��+��+��=(�+�)(�+�)(a2+c2)(b2+c2)+(a2+d2)(b2+d2)≥ac+bc+ad+bd=(a+b)(c+d)
Áp dụng bất đẳng thức Cauchy-Schwarz và bất đẳng thức AM-GM, ta có:
\(a^2+3\left(b^2+c^2+d^2\right)\ge a^2+\left(b+c+d\right)^2\ge2a\left(b+c+d\right)\)
Đẳng thức xảy ra khi $b=c=d=\frac{a}{3}.$
Có cách khác ko ạ
như dùng phương pháp biến đổi tương đương ý ạ tthnew