Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a ) \(2a^2+b^2+c^2\ge2a\left(b+c\right)\)
\(\Leftrightarrow a^2-2ab+b^2+a^2-2ac+c^2\ge0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(a-c\right)^2\ge0\)
\(\LeftrightarrowĐPCM.\)
b ) \(a^2+2b^2+12\ge2b\left(3-a\right)\)
\(\Leftrightarrow a^2+2b^2+12\ge6b-2ab\)
\(\Leftrightarrow a^2+2ab+b^2+b^2-6b+9+3\ge0\)
\(\Leftrightarrow\left(a+b\right)^2+\left(b-3\right)^2+3\ge0\)
\(\LeftrightarrowĐPCM.\)
c ) \(a^2+b^2+c^2\ge2\left(a+b+c\right)-3\)
\(\Leftrightarrow a^2+2a+1+b^2+2b+1+c^2+2c+1\ge0\)
\(\Leftrightarrow\left(a+1\right)^2+\left(b+1\right)^2+\left(c+1\right)^2\ge0\)
\(\LeftrightarrowĐPCM.\)
a)theo cauchy ta có
\(\left\{{}\begin{matrix}a^2+b^2\ge2ab\\a^2+c^2\ge2ac\end{matrix}\right.\)
\(\Leftrightarrow2a^2+b^2+c^2\ge2a\left(b+c\right)\Rightarrowđpcm\)
câu b) xem lại đề , tôi nghĩ phải > 0 mới đúng
c) theo cauchy ta có
\(\left\{{}\begin{matrix}a^2+b^2\ge2ab\\a^2+c^2\ge2ac\\b^2+c^2\ge2bc\end{matrix}\right.\)
cộng lại, rút 2 đi suy ra đpcm
1) Bất đẳng thức cần chứng minh
\(\Leftrightarrow\) a2 + b2 + c2 + d2 + \(2\sqrt{\left(a^2+b^2\right)\left(c^2+d^2\right)}\ge\left(a+c\right)^2+\left(b+d\right)^2\)
\(\Leftrightarrow\) \(ac+bd\le\sqrt{\left(a^2+b^2\right)\left(c^2+d^2\right)}\left(1\right)\)
Nếu : ac + bd < 0 : BĐT luôn đúng
Nếu : ac + bd \(\ge\) 0 : Thì (1) tương đương
( ac + bd )2 \(\le\) ( a2 + b2 )( c2 + d2 )
\(\Leftrightarrow\) \(\left(ac\right)^2+\left(bd\right)^2+2abcd\le\left(ac\right)^2+\left(ad\right)^2+\left(bc\right)^2+\left(bd\right)^2\)
\(\Leftrightarrow\) \(\left(ad\right)^2+\left(bc\right)^2-2abcd\ge0\)
\(\Leftrightarrow\) \(\left(ad-bc\right)^2\ge0\) , luôn đúng , vậy bài toán được chứng minh
2) Chọn :\(\left\{{}\begin{matrix}a=2\cos x.\cos y\\c=2\sin x.\sin y\\b=d=\sin\left(x-y\right)\end{matrix}\right.\)
Từ câu 1) ta có :
\(\sqrt{4\cos^2x.\cos^2y+\sin^2\left(x-y\right)}+\sqrt{4\sin^2x.\sin^2y+\sin^2\left(x-y\right)}\)
\(\ge\sqrt{\left(2\cos x.\cos y+2\sin x.\sin y\right)^2+\left(2\sin\left(x-y\right)\right)^2}\)
\(\ge\sqrt{4\cos^2\left(x-y\right)+4\sin^2\left(x-y\right)}=2\)
c) theo bđt cauchy ta có
\(\left\{{}\begin{matrix}a^2+b^2\ge2ab\\b^2+1\ge2b\\a^2+1\ge2a\end{matrix}\right.\)
cộng hết lại rút 2 đi \(\Rightarrowđpcm\)
Áp dụng bất đẳng thức Cauchy-Schwarz và bất đẳng thức AM-GM, ta có:
\(a^2+3\left(b^2+c^2+d^2\right)\ge a^2+\left(b+c+d\right)^2\ge2a\left(b+c+d\right)\)
Đẳng thức xảy ra khi $b=c=d=\frac{a}{3}.$
Có cách khác ko ạ
như dùng phương pháp biến đổi tương đương ý ạ tthnew