Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Δ có vtcp là (2;-1) và đi qua A(1;-3)
=>VTPT là (1;2)
PTTQ là:
1(x-1)+2(y+3)=0
=>x-1+2y+6=0
=>x+2y+5=0
b: Vì d vuông góc Δ nên d: 2x-y+c=0
Tọa độ giao của d1 và d2 là:
x+2y=8 và x-2y=0
=>x=4 và y=2
Thay x=4 và y=2 vào 2x-y+c=0, ta được
c+2*4-2=0
=>c=-2
a) Đường thẳng \({\Delta _1}\)có một vectơ chỉ phương là \({\overrightarrow u _{{\Delta _1}}} = \left( {2;5} \right)\)
Do đó \({\overrightarrow n _{{\Delta _1}}} = \left( { - 5;2} \right)\), đồng thời \({\Delta _1}\) đi qua điểm \(M\left( {1;3} \right)\) nên phương trình tổng quát của \({\Delta _1}\) là: \(-5\left( {x - 1} \right) + 2\left( {y - 3} \right) = 0 \Leftrightarrow 5x - 2y + 1 = 0\).
b) Đường thẳng \({\Delta _2}\)có một vectơ pháp tuyến là \({\overrightarrow n _{{\Delta _2}}} = \left( {2;3} \right)\)
Do đó \({\overrightarrow u _{{\Delta _1}}} = \left( { - 3;2} \right)\), đồng thời \({\Delta _2}\) đi qua điểm \(N\left( {1;1} \right)\) nên phương trình tham số của \({\Delta _2}\) là: \(\left\{ \begin{array}{l}x = 1 - 3t\\y = 1 + 2t\end{array} \right.\).
Đường thẳng AB có một vectơ chỉ phương là \(\overrightarrow {{u_{AB}}} = \overrightarrow {AB} = \left( { - a;b} \right)\). Do đó \(\overrightarrow {{n_{AB}}} = \left( {b;a} \right)\)
Phương trình tổng quát của đường thẳng AB có vectơ pháp tuyến \(\overrightarrow {{n_{AB}}} = \left( {b;a} \right)\) và đi qua điểm \(A\left( {a;0} \right)\)là: \(b\left( {x - a} \right) + a\left( {y - 0} \right) \Leftrightarrow bx + ay - ab = 0 \Leftrightarrow \frac{x}{a} + \frac{y}{b} = 1\).