cho a/b=c/d chứng minh (a-b/c-d)^2013=a^2013+b^2013/c^2013+d^2013
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a+b=c+d⇔(a+b)2=(c+d)2⇔a2+b2+2ab=c2+d2+2cd⇔ab=cd⇔−2ab=−2cd⇔(a−b)2=(c−d)2⇔a−b=|c−d|⇔a=c∨a=d→Q.E.Da+b=c+d⇔(a+b)2=(c+d)2⇔a2+b2+2ab=c2+d2+2cd⇔ab=cd⇔−2ab=−2cd⇔(a−b)2=(c−d)2⇔a−b=|c−d|⇔a=c∨a=d→Q.E.D
Lời giải:
$a+b=c+d$
$(a+b)^2=(c+d)^2\Rightarrow a^2+b^2+2ab=c^2+d^2+2cd$
$\Rightarrow ab=cd\Rightarrow \frac{a}{d}=\frac{c}{b}$.
Đặt $\frac{a}{d}=\frac{c}{b}=k$
$\Rightarrow a=dk; c=bk$. Khi đó:
$a+b=c+d$
$\Leftrightarrow dk+b=bk+d$
$\Leftrightarrow k(d-b)=d-b$
$\Leftrightarrow (d-b)(k-1)=0$
$\Rightarrow d=b$ hoặc $k=1$.
Nếu $b=d$ thì do $ab=cd\Rightarrow a=c$.
$\Rightarrow b^{2013}=d^{2013}; a^{2013}=c^{2013}$
$\Rightarrow a^{2013}+b^{2013}=c^{2013}+d^{2013}$
Nếu $k=1\Rightarrow a=d; b=c$
$\Rightarrow a^{2013}=d^{2013}; b^{2013}=c^{2013}$
$\Rightarrow a^{2013}+b^{2013}=c^{2013}+d^{2013}$
Lời giải:
$a+b=c+d$
$(a+b)^2=(c+d)^2\Rightarrow a^2+b^2+2ab=c^2+d^2+2cd$
$\Rightarrow ab=cd\Rightarrow \frac{a}{d}=\frac{c}{b}$.
Đặt $\frac{a}{d}=\frac{c}{b}=k$
$\Rightarrow a=dk; c=bk$. Khi đó:
$a+b=c+d$
$\Leftrightarrow dk+b=bk+d$
$\Leftrightarrow k(d-b)=d-b$
$\Leftrightarrow (d-b)(k-1)=0$
$\Rightarrow d=b$ hoặc $k=1$.
Nếu $b=d$ thì do $ab=cd\Rightarrow a=c$.
$\Rightarrow b^{2013}=d^{2013}; a^{2013}=c^{2013}$
$\Rightarrow a^{2013}+b^{2013}=c^{2013}+d^{2013}$
Nếu $k=1\Rightarrow a=d; b=c$
$\Rightarrow a^{2013}=d^{2013}; b^{2013}=c^{2013}$
$\Rightarrow a^{2013}+b^{2013}=c^{2013}+d^{2013}$
\(\frac{a}{b}=\frac{c}{d}\\ \Rightarrow\frac{a}{c}=\frac{b}{d}\\ \Rightarrow\frac{a^{2013}}{c^{2013}}=\frac{b^{2013}}{d^{2013}}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\frac{a}{c}=\frac{b}{d}=\frac{a-b}{c-d}\\ \Rightarrow\frac{a^{2013}}{c^{2013}}=\frac{b^{2013}}{d^{2013}}=\left(\frac{a-b}{c-d}\right)^{2013}\left(1\right)\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\frac{a^{2013}}{c^{2013}}=\frac{b^{2013}}{d^{2013}}=\frac{a^{2013}+b^{2013}}{c^{2013}+d^{2013}}\left(2\right)\)
\(\left(1\right)\left(2\right)\Rightarrow\left(\frac{a-b}{c-d}\right)^{2013}=\frac{a^{2013}+b^{2013}}{c^{2013}+d^{2013}}\)
\(a+b=c+d\)
\(\Rightarrow\left(a+b\right)^2=\left(c+d\right)^2\)
\(\Rightarrow a^2+2ab+b^2=c^2+2cd+d^2\)
Vì \(a^2+b^2=c^2+d^2\) (đề bài)
Nên \(2ab=2cd\)
Tương tự do 2ab = 2cd rồi nên
\(a^2-2ab+b^2=c^2-2cd+d^2\)
\(\Rightarrow\left(a-b\right)^2=\left(c-d\right)^2\)
Nếu \(c-d=a-b\)
Và \(c+d=a+b\) (đề bài) (1)
CỘng vế theo vế ta được: \(2c=2a\)
Suy ra: a = c (2)
(1)(2) => b = d
Vậy \(a^{2013}+b^{2013}=c^{2013}+d^{2013}\) (*)
Nếu \(c-d=b-a\)
\(c+d=a+b\)
Ta cũng cộng vế theo vế \(\Rightarrow2c=2b\)
=> b = c
=> a = d
\(\Rightarrow a^{2013}+b^{2013}=c^{2013}+d^{2013}\) (2*)
Kết hợp (*) và (2*) ta được điều phải chứng minh
Bài làm
Vì\(\frac{a}{b}=\frac{c}{d}\)
=> \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\Rightarrow\frac{a^{2013}}{c^{2013}}=\frac{b^{2013}}{d^{2013}}\)
=> \(\frac{a^{2013}}{c^{2013}}=\frac{b^{2013}}{d^{2013}}\Rightarrow\left(\frac{a-b}{c-d}\right)^{2013}=\frac{a^{2013}+b^{2013}}{c^{2013}+d^{2013}}\)(đpcm)
\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\)
Áp dụng tính chất của dãy tỉ số bằng nhau:
\(\frac{a}{c}=\frac{b}{d}=\frac{a-b}{c-d}\)
\(\Rightarrow\frac{a^{2013}}{c^{2013}}=\frac{b^{2013}}{d^{2013}}=\left(\frac{a-b}{c-d}\right)^{2013}\) (1)
Ta có: \(\frac{a}{c}=\frac{b}{d}\Rightarrow\frac{a^{2013}}{c^{2013}}=\frac{b^{2013}}{d^{2013}}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\frac{a^{2013}}{c^{2013}}=\frac{b^{2013}}{d^{2013}}=\frac{a^{2013}+b^{2013}}{c^{2013}+d^{2013}}\) (2)
Từ (1) và (2), ta được: \(\left(\frac{a-b}{c-d}\right)^{2013}=\frac{a^{2013}+b^{2013}}{c^{2013}+d^{2013}}\)