Chứng tỏ rằng cặp số sau luôn nguyên tố cùng nhau vs mọi số tự nhiên n:
4n+5 và 3n+4
các bn giúp mik vs mik tick giùm cho
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Mình mẫu đầu với cuối nhé:
a) Đặt \(ƯCLN\left(3n+4,3n+7\right)=d\)
\(\Rightarrow\left\{{}\begin{matrix}3n+4⋮d\\3n+7⋮d\end{matrix}\right.\)
\(\Rightarrow\left(3n+7\right)-\left(3n+4\right)⋮d\)
\(\Rightarrow3⋮d\)
\(\Rightarrow d\in\left\{1,3\right\}\)
Nhưng do \(3n+4,3n+7⋮̸3\) nên \(d\ne3\Rightarrow d=1\)
Vậy \(ƯCLN\left(3n+4,3n+7\right)=1\) hay \(3n+4,3n+7\) nguyên tố cùng nhau.
e) \(ƯCLN\left(2n+3,3n+5\right)=d\)
\(\Rightarrow\left\{{}\begin{matrix}2n+3⋮d\\3n+5⋮d\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}6n+9⋮d\\6n+10⋮d\end{matrix}\right.\)
\(\Rightarrow\left(6n+10\right)-\left(6n+9\right)⋮d\)
\(\Rightarrow1⋮d\) \(\Rightarrow d=1\)
Vậy \(ƯCLN\left(2n+3,3n+5\right)=1\), ta có đpcm.
a: Gọi d=ƯCLN(6n+5;2n+1)
=>\(\left\{{}\begin{matrix}6n+5⋮d\\2n+1⋮d\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}6n+5⋮d\\6n+3⋮d\end{matrix}\right.\Leftrightarrow6n+5-6n-3⋮d\)
=>\(2⋮d\)
mà 2n+1 là số lẻ
nên d=1
=>2n+1 và 6n+5 là hai số nguyên tố cùng nhau
b: Gọi d=ƯCLN(3n+2;5n+3)
=>\(\left\{{}\begin{matrix}3n+2⋮d\\5n+3⋮d\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}15n+10⋮d\\15n+9⋮d\end{matrix}\right.\)
=>\(15n+10-15n-9⋮d\)
=>\(1⋮d\)
=>d=1
=>3n+2 và 5n+3 là hai số nguyên tố cùng nhau
a: \(\left\{{}\begin{matrix}2n+3⋮d\\3n+5⋮d\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}6n+9⋮d\\6n+10⋮d\end{matrix}\right.\Leftrightarrow d=1\)
Vậy: 2n+3 và 3n+5 là hai số nguyên tố cùng nhau
a) Gọi ƯCLN (n + 3; n + 2) = d.
Ta thấy (n + 3) chia hết cho d; (n+2) chia hết cho d=>[(n + 3)- (n + 2)] chia hết cho d =>l chia hết cho d
Nên d = 1. Do đó n + 3 và n + 2 là hai số nguyên tố cùng nhau.
b) Gọi ƯCLN (3n+4; 3n + 7) = đ.
Ta thấy (3n + 4) chia hết cho d;(3n+7) chia hết cho d =>[(3n+7) - (3n + 4)] chia hết cho d =>3 chia hết cho d nên
d = 1 hoặc d = 3.
Mà (3n + 4) không chia hết cho 3; (3n + 7) không chia hết cho 3 nên d = 1. Ta có điều phải chứng minh.
c) Gọi ƯCLN (2n + 3; 4n + 8) = d.
Ta thấy (2n + 3) chia hết cho d ; (4n + 8) chia hết cho d => [(4n + 8) - 2.(2n +3)] chia hết cho d => 2 chia hết cho d
nên d = 1 hoặc d = 2.
Mà (2n+3) không chia hết cho 2 nên d = 1. Ta có điều phải chứng minh.
tink nhé
gọi ƯCLN(4n+3;6n+5)=k
=>4n+3 chia hết cho k | =>3(4n+3) chia hết cho k
6n+5 chia hết cho k | =>2(6n+5) chia hết cho k
=>12n+9 chia hết cho k
=>12n+10 chia hết cho k
=>(12n+10)-(12n+9) chia hết cho k
=>1chia hết cho k =>k=1
=>đpcm
chúc bạn học tốt
4n + 3 và số 6n + 5 là hai số nguyên tố cùng nhau?
goi UCLN(4n+3,6n+5)=d
=>4n+3 chia hết cho d=>24n+18 chia hết cho d
=>6n+5 chia hết cho d=>24n+20 chia hết cho d
=>(24n+20)-(24n+18) chia hết cho d
=>2 chia hết cho d
mà 2 chia hết cho 1;2
=>d=1;2
.....
đang ban bn làm tiếp nhé
a) Gọi d=(2n+3; 3n+4)
Ta có: 2n+3 và 3n+4 chia hết cho d
--> 6n+9 và 6n+8 chia hết cho d
--> (6n+9)-(6n+8) chia hết cho d
--> 1 chia hết cho d
--> d = 1
--> 2n+3 và 3n+4 nguyên tố cùng nhau
a: Gọi d là UCLN của 2n+3 và 3n+4
\(\Leftrightarrow\left\{{}\begin{matrix}6n+9⋮d\\6n+8⋮d\end{matrix}\right.\Leftrightarrow d=1\)
=> UCLN(2n+3;3n+4)=1
hay 2n+3;3n+4 là hai số nguyên tố cùng nhau
a) Giả sử \(2n+3;4n+8\) chưa nguyên tố cùng nhau
\(\Leftrightarrow2n+3;4n+8\)có ước chung là số nguyên tố
Gọi \(d=ƯC\left(2n+3;4n+8\right)\)
\(\Leftrightarrow\hept{\begin{cases}2n+3⋮d\\4n+8⋮d\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}4n+6⋮d\\4n+8⋮d\end{cases}}\)
\(\Leftrightarrow2⋮d\)
Vì \(d\in N;2⋮d\Leftrightarrow d=1;2\)
+) \(d=2\Leftrightarrow2n+3⋮2\) (vô lí)
\(\Leftrightarrow d=1\)
\(\Leftrightarrow2n+3;4n+8\)nguyên tố cùng nhau với mọi n
Câu b tương tự
Chúc b hc tốt!
a)Gọi UCLN của 2n+3 và 4n+8 là d (d thuộc N*)
=>\(\hept{\begin{cases}2n+3\\4n+8\end{cases}}\)cùng chia hết cho d
=>(4n+8)-(2n+3) chia hết cho d
=>(4n+8)-2(2n+3) chia hết cho d
=>4n+8-4n-6 chia hết cho d
=>2 chia hết cho d
=>d thuộc Ư của 2
=>\(\orbr{\begin{cases}d=1\\d=2\end{cases}}\)
Có 2n+3 chia hết cho d
Mà 2n+3 là số lẻ nên d không thể = 2 (ước của số lẻ không =2)
=>d=1
=>UCLN(2n+3;4n+8)=1
Vậy 2n+3 và 4n+8 là 2 số nguyên tố cùng nhau
Gọi \(ƯCLN\left(4n+5;3n+4\right)\)là \(d\)\(\left(d>0\right)\)
\(\Rightarrow\hept{\begin{cases}4n+5⋮d\\3n+4⋮d\end{cases}}\)\(\Rightarrow\)\(\hept{\begin{cases}3.\left(4n+5\right)⋮d\\4.\left(3n+4\right)⋮d\end{cases}}\)\(\Rightarrow\)\(\hept{\begin{cases}12n+15⋮d\\12n+16⋮d\end{cases}}\)
\(\Rightarrow\)\(\left(12n+16\right)-\left(12n+15\right)⋮d\)
\(\Rightarrow\)\(12n+16-12n-15⋮d\)
\(\Rightarrow\)\(1⋮d\)
\(\Rightarrow\)\(d=1\)
Vậy \(4n+5\)và \(3n+4\)luôn là hai số nguyên tố cùng nhau
giả sử 4n+5 và 3n+4 có ước chung là số nguyên tố d
khi đó ta có 4n+5 chia hết cho d =>3(4n+5)chia hết cho d =>12n+15 chia hết cho d
3n+4 chia hết cho d=>4(3n+4) chia hết cho d =>12n+16 chia hết cho d
từ 2 điều trên =>(12n+16)-(12n+5) chia hết cho d
=>1 chia hết cho d
=>d thuộc ước của 1
=> ước chung của 4n+5 và 3n+4 là 1 và -1
=>4n+5 và 3n+4 nguyên tố cúng nhau