K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Do \(\left(SC;\left(ABCD\right)\right)=45^0;SA\perp\left(ABCD\right)\)

nên \(\left\{{}\begin{matrix}\left(SC;AC\right)=45^0\\AS\perp AC\end{matrix}\right.\)\(\Rightarrow AS=AC=\sqrt{AB^2+BC^2}=\sqrt{a^2+a^2}=a\sqrt{2}\)

\(\Rightarrow V_{S.ABCD}=\dfrac{1}{6}.\left(AD+BC\right).AB.AS\)

\(=\dfrac{1}{6}\left(2a+a\right).a.a\sqrt{2}=\dfrac{\sqrt{2}}{2}a^3\)

27 tháng 3 2018

Đáp án D

1 tháng 1 2020

Đáp án A

26 tháng 2 2018

Đáp án A

Gắn trục tọa độ Axyz với A là gốc tọa độ sao cho:

Tia Ax trùng tia AB; tia Ay trùng tia AD; tia Az trùng tia AS.

Khi đó:

 

Gọi O là tâm hình vuông ABCD.

Do góc giữa mặt phẳng(SBD)và (ABCD) bằng 60 o nên  S O A ⏞ = 60 o

⇒ S 0 ; 0 ; a 6 2

 Mặt phẳng (P) chứa SC và song song với BM có vecto pháp tuyến là ( 6 ; 2 6 ; 6 ) / / 1 ; 2 ; 6  nên có phương trình:

x + 2 y + 6 z - 3 a = 0

 Do đó: d ( S C , B M ) = d ( B ; ( P ) ) = 2 a 11 (đvđd).

26 tháng 2 2017

4 tháng 5 2019

Chọn C

Ta gọi E, F lần lượt là trung điểm của SC, AB

 

Ta có ME//NF(do cùng song song với BC. Nên tứ giác MENF là hình thang, và 

hay tứ giác MENF là hình thang vuông tại M, F

Ta có:  hay E là hình chiếu vuông góc của N lên (SAC)

 

Từ đó ta có được, góc giữa MN và (SAC) là góc giữa MN và CI

Suy ra, gọi  α là góc giữa MN và (SAC) thì 

18 tháng 7 2018

Chọn A

21 tháng 4 2018

Chọn A

=> SB là hình chiếu của SC lên mặt phẳng (SAB).

.

Xét tam giác SBC vuông tại B có

Xét tam giác SAB vuông tại A có: