Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án C.
Không mất tính tổng quát, giả sử a = 1
Xét hệ trục tọa độ Oxyz với
A 0 ; 0 ; 0 ; D 2 ; 0 ; 0 ;
B 0 ; 1 ; 0 ; S 0 ; 0 ; 5 .
Điểm C thỏa mãn
B C → = 1 2 A D → = 1 ; 0 ; 0
⇒ C 1 ; 1 ; 0 .
mp(SBC) có
n 1 → = S B → ; B C → = 0 ; 1 ; − 5 ; 1 ; 0 ; 0
= 0 ; − 5 ; − 1 .
mp(SCD) có
n 2 → = S D → ; C D → = 2 ; 0 ; − 5 ; 1 ; − 1 ; 0 = 5 ; 5 ; 2 .
Do đó côsin của góc tạo bởi hai mặt phẳng (SBC) và (SCD) bằng:
cos α = n 1 → . n 2 → n 1 . n 2 = 7 2 3 = 21 6 .
Ta có S C D ∩ A B C D = C D
C D ⊥ S A C D ⊥ A C ⇒ C D ⊥ S A C ⇒ S C ⊥ C D
Vì S C ⊥ C D , S C ⊂ S C D A C ⊥ C D , A C ⊂ A B C D
Nên S C D , A B C D ^ = S C A ^ = 45 o
Dễ thấy ∆ S A C vuông cân tại A
Suy ra SA = AC = a 2
Lại có
S M C D = 1 2 M C . M D = 1 2 a . a = a 2 2
Do đó
V = V S . M C D = 1 3 S M C D S A = 1 3 . a 2 2 . a 2 = a 3 2 6
Ta có
B D ∥ M N M N ⊂ S M N ⇒ B D ∥ S M N
Khi đó d( SM,BD ) = d( SM, (SMN) ) = d( D, (SMN) ) = d( A, ( SMN) )
Kẻ A P ⊥ M N , P ∈ M N A H ⊥ S P , H ∈ S P
Suy ra A H ⊥ S M N ⇒ d A S M N = A H
∆ S A P vuông tại A có
1 A H 2 = 1 S A 2 + 1 A P 2 = 1 S A 2 + 1 A N 2 + 1 A M 2 = 1 2 a 2 + 1 a 2 4 + 1 a 2 = 11 2 a 2
Do đó d = d( SM, BD ) = AH = a 22 11
Đáp án A
Đáp án C.
Kẻ C H ⊥ A B .
Bằng tính toán hình thang vuông thông thương ta có được:
Đáp án B.
Ta có A D / / B C , A D ∉ ( S B C ) , B C ⊂ ( S B C ) ⇒ A D / / ( S B C )
⇒ d ( A D ; S C ) = d ( A D ; ( S B C ) ) = d ( D ; ( S B C ) ) .
Qua I kẻ đường thẳng song song với AD, cắt CD tại H.
Suy ra I H ⊥ C D
Từ C D ⊥ I H , C D ⊥ S I ⇒ C D ⊥ ( S I H ) ⇒ C D ⊥ S H .
Suy ra ( S C D ) , ( A B C D ) ⏜ = S H , I H ⏜ = S H I ⏜ ⇒ C D ⊥ S H
S I = H I . tan S H I ⏜ = a . tan 60 ° = a 3 ⇒ V S . B C D = 1 2 S A B C D = a 3 3 6 .
Lại có V S . B C D = 1 3 . S ∆ S B C . d ( D ; ( S B C ) ) ⇒ d ( D ; ( S B C ) = 3 V S . B C D S ∆ S B C (1)
Từ I B = 2 3 A B = 2 3 a ⇒ S B = S I 2 + I B 2 = a 3 2 + 2 a 3 2 = a 31 3 .
Từ B C ⊥ A B , B C ⊥ S I ⇒ B C ⊥ ( S A B ) ⇒ B C ⊥ ( S A B ) ⇒ B C ⊥ S B ⇒ ∆ S B C vuông tại B.
Suy ra S ∆ S B C = 1 2 S B . S C = 1 2 . a 31 3 . a = a 2 31 6 (2)
Từ (1) và (2), suy ra d ( D ; ( S B C ) ) = 3 a 3 3 6 a 2 31 6 = 3 a 3 31 = 3 39 31 a
Vậy d ( A D ; S C ) = d ( D ; ( S B C ) ) = 3 93 31 a
Đáp án B
Kẻ I H ⊥ B C . Ta có S I B C = S A B C D − S A B I − S C D I = 3 2 a 2
Mà B C = A D 2 + A B − C D 2 = 5 a
⇒ I H = 3 5 5 a
Dễ thấy góc giữa 2 mặt phẳng S B C và A B C D là góc SJI, có S I = 3 V A B C D S A B C D = 3 15 5 a .
Vậy tan S I J = S I I H = 3 ⇒ S I J ^ = 60 0 .
Đáp án là A
Tính được: I B = a 5 ; I C = a 2 ; B C = a 5 ;
S A B C D = 3 a 2 ; I K = 3 a 5 ; S I = 3 a 15 5
Vậy: V S . A B C D = 1 3 S I . S A B C D = 3 a 3 15 5 .
Đáp án D