Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(\widehat{BDC}+\widehat{C}=90^0\)
\(\widehat{HBC}+\widehat{C}=90^0\)
Do đó: \(\widehat{BDC}=\widehat{HBC}\)
b: Xét ΔBDC vuông tại B có BH là đường cao
nên \(BC^2=HC\cdot CD\)
a: XétΔBDC vuông tại B và ΔHBC vuông tại H có
góc C chung
=>ΔBDC đồng dạng với ΔHBC
b: ΔBDC đồng dạng với ΔHBC
=>CB/CH=CD/CB
=>CB^2=CH*CD
c: Xét ΔAKD vuông tại K và ΔBHC vuông tại H có
góc ADK=góc BCH
=>ΔAKD đồng dạng với ΔBHC
d: \(BD=\sqrt{25^2-15^2}=20\left(cm\right)\)
HC=15^2/25=9cm
=>HD=16cm
B) Kẻ MH vuông góc QP và NK vuông góc với QP ta có :
Ta có : MHK = NKH = 90 độ
=> MH // NK
=> Tứ giác MNKH là hình thang
Mà MHK = NKH = 90 độ
=> Tứ giác MNKH là hình thang cân
=> HMN = MNK = 90 độ
=> MNK = NKH = 90 độ
=> MN // HK
=> MN// QP
=> MNPQ là hình thang
Mà QMN = MNP (gt)
=> MNPQ là hình thang cân(dpcm)
Ko bt tớ làm đúng ko nếu sai đừng chửi mk nhé
A B C D M I 1 2 1 2 1 2
Gọi M là giao điểm DI và AB
Ta có: AM//DC
=> \(\widehat{M}=\widehat{D_2}\)( sole trong) (1)
Mà \(\widehat{D_1}=\widehat{D_2}\)( DI là phân giác góc D)
=> \(\widehat{M}=\widehat{D_1}\)
=> Tam giác ADM cân
=> ID=IM (2)
Ta lại có: \(\widehat{I_1}=\widehat{I_2}\)( so le trong) (3)
Từ (1) , (2) => Tam giác IBM = tam giác ICD
=> BM=DC
Do vậy: AD=AM=AB+BM=AB+DC (AD=AM vì tam giác ADM cân)
Qua P kẻ đường thẳng song song với AD cắt CD tại P. Khi đó dễ thấy \(AB=DP\). Từ đó \(DC-AB=DC-DM=CM\)
Mặt khác, \(AD=BM\) nên \(AD+BC=BM+BC\).
Hiển nhiên \(CM< BM+BC\). Điều này dẫn đến \(DC-AB< AD+BC\) (đpcm)
a: Xét ΔBDC vuông tại B và ΔHBC vuông tại H có
góc C chung
=>ΔBDC đồng dạng với ΔHBC
b: ΔBDC đồng dạng với ΔHBC
=>BC/HC=DC/BC
=>BC^2=HC*DC
c: Xét ΔAKD vuông tại K và ΔBHC vuông tại H có
AD=BC
góc D=góc C
=>ΔAKD=ΔBHC
d: BD=căn 25^2-15^2=20cm
HC=BC^2/DC=15^2/25=9cm
a) Ta có MN là đường trung bình của tam giác ABD, do đó MN song song với AB và có độ dài bằng một nửa độ dài AB.
Tương tự, MN song song với CD và có độ dài bằng một nửa độ dài CD.
Vì AB//CD, nên MN song song với AB và CD.
Do đó, ta có MNCH là hình bình hành.
*Ib có phần b nhé =))
Vẽ tia Bx song song với AD và gọi AD giao với DC la E
Ta có: BE song song với AD
AB song song với DE
=)AB=DE ; AD=BE
BE+BC>EC (bất đẳng thức tam giác)
=)AD+BC>DC-DE =)AD+BC>DC-AB
Hình (đừng xoá)
Áp dụng định lý Py-ta-go vào tam giác vuông OAB, ta được:
\(AB^2=OB^2+OA^2\)(1)
Áp dụng định lý Py-ta-go vào tam giác vuông ODC, ta được:
\(DC^2=OD^2+OC^2\)(2)
Từ (1) và (2) -> \(AB^2+CD^2=OA^2+OB^2+OC^2+OD^2\left(3\right)\)
Áp dụng đính lý Py-ta-go vào tam giác vuông OBC, ta được:
\(BC^2=OC^2+OB^2\left(4\right)\)
Áp dụng định lý Py-ta-go vào tam giác vuông OAD, ta được:
\(AD^2=OA^2+OD^2\left(5\right)\)
Từ (4) và (5) ta có: \(BC^2+AD^2=OB^2+OC^2+OA^2+OD^2\left(6\right)\)
Từ (3) và (6) suy ra \(AB^2+DC^2=BC^2+AC^2\)
Mỏi tay vc:vv