K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
4 tháng 1 2021

Lời giải:

$S=1+2+2^2+2^3+2^4....+2^{99}$

$2S=2+2^2+2^3+....+2^{100}$

Trừ theo vế ta có:

$2S-S=(2+2^2+2^3+...+2^{100})-(1+2+2^3+..+2^{99})=2^{100}-1$

$S=2^{100}-1< 2^{100}$

Có : \(S=1+2+2^2+2^3+....+2^{99}\)

\(\Rightarrow2S=2+2^2+2^3+....+2^{100}\)

\(\Rightarrow2S-S=\left(2+2^2+2^3+...+2^{100}\right)-\left(1+2+2^2+....+2^{99}\right)\)

\(\Rightarrow S=2^{100}-1< 2^{100}\)

Vậy \(S< 2^{100}\)

 S=1+2+22+23+....+299

⇒2S=2+22+23+....+2100

⇒2S−S=2100-1

S=2100-1

vì 2100 -1<2100

⇒S<2100

 

14 tháng 7 2023

\(S=1+2+2^2+2^3+...+2^9\) 

Đặt \(2S=2+2^2+2^3+2^4+...+2^{10}\) 

\(2S-S=2^{10}-1\) hay \(S=2^{10}-1< 2^{10}\)

\(\Rightarrow\) \(2^{10}=2^2.2^8< 5.2^8\) 

Vậy \(S< 5.2^8\)

\(#Tuyết\)

2S=2+2^2+...+2^10

=>S=2^10-1=1023

5*2^8=256*5=1280

=>S<5*2^8

5 tháng 8 2023

\(A=2^{100}-2^{99}+2^{98}-2^{97}+....-2^3+2^2-2+1\\ A=\left(2^{100}+2^{98}+...+2\right)-\left(2^{99}+2^{97}+...+1\right)\)

Gọi \(\left(2^{100}+2^{98}+...+2\right)\)là B

\(B=\left(2^{100}+2^{98}+...+2\right)\\ 2B=2^{102}+2^{100}+.....+2^2\\ 2B-B=\left(2^{102}+2^{100}+.....+2^2\right)-\left(2^{100}+2^{98}+...+2\right)\\ B=2^{102}-2\)

Gọi \(\left(2^{99}+2^{97}+...+1\right)\) là C

\(C=\left(2^{99}+2^{97}+...+1\right)\\ 2C=2^{101}+2^{99}+....+2\\ 2C-C=\left(2^{101}+2^{99}+9^{97}+...+2\right)-\left(2^{99}+9^{97}+...+1\right)\\ C=2^{101}-1\)

\(A=B+C\\ =>A=2^{102}-2+2^{101}-1\\ A=2^{101}\left(2+1\right)-3\\ A=2^{101}\cdot3-3\\ A=3\cdot\left(2^{101}-1\right)\)

HQ
Hà Quang Minh
Giáo viên
5 tháng 8 2023

\(\dfrac{1}{2}A=2^{99}-2^{98}+...-1+\dfrac{1}{2}\\ \Rightarrow A-\dfrac{1}{2}A=2^{100}-\dfrac{1}{2}\\ \Rightarrow A=2^{101}-1\)

26 tháng 8 2021

\(A=1+2+2^2+2^3+2^4+...+2^{99}+2^{100}\)

\(\Rightarrow2A=2+2^2+2^3+2^4+2^5+...+2^{100}+2^{101}\)

\(\Rightarrow2A-A=2^{101}-1\)

\(\Leftrightarrow A=2^{101}-1\)

26 tháng 8 2021

Đặt biểu thức là A

ta có 2A-A=2^101-1

10 tháng 9 2023

S=1+2+22+...+29�=1+2+22+...+29

2S=2(1+2+22+...+210)2�=2(1+2+22+...+210)

2S=2+22+23+...+292�=2+22+23+...+29

2SS=(2+22+23+...+210)(1+2+22+...+29)2�−�=(2+22+23+...+210)−(1+2+22+...+29)

\(S=2^{10}-1=2^2.2^8-1=4.2^8-1

 

HT

11 tháng 9 2023

S=1+2+22+...+29�=1+2+22+...+29

2S=2(1+2+22+...+210)2�=2(1+2+22+...+210)

2S=2+22+23+...+292�=2+22+23+...+29

2SS=(2+22+23+...+210)(1+2+22+...+29)2�−�=(2+22+23+...+210)−(1+2+22+...+29)

\(S=2^{10}-1=2^2.2^8-1=4.2^8-1

Sửa đề: \(S=2^{100}-2^{99}+2^{98}-...+2^2-2\)

=>\(2\cdot S=2^{101}-2^{100}+2^{99}-...+2^3-2^2\)

=>\(2S+S=2^{100}-2^{99}+2^{98}-...+2^2-2+2^{101}-2^{100}+2^{99}-...+2^3-2^2\)

=>\(3S=2^{101}-2\)

=>\(S=\dfrac{2^{101}-2}{3}\)

22 tháng 1 2024

Chịuuuuuuu

11 tháng 9 2021

\(A=2+2^2+2^3+2^4+...+2^{99}+2^{100}\)

\(\Rightarrow2A=2^2+2^3+2^4+...+2^{100}+2^{101}\)

\(\Rightarrow A=2A-A=2^2+2^3+2^4+...+2^{100}+2^{101}-2-2^2-2^3-2^4-...-2^{99}-2^{100}=2^{101}-2\)

19 tháng 4 2018

Ta có

  2 1 + 2 2 + 2 3 + 2 4 + 2 5 + 2 6 + 2 7 +...+ 2 98 + 2 99 + 2 100

= 2 1 + ( 2 2 + 2 3 + 2 4 ) + ( 2 5 + 2 6 + 2 7 ) +...+ ( 2 98 + 2 99 + 2 100 )

= 2 + 2 2 1 + 2 + 2 2 + 2 5 1 + 2 + 2 2 + . . . + 2 98 1 + 2 + 2 2

= 2 + 2 2 . 7 + 2 5 . 7 + . . . + 2 98 . 7 = 2 + 7 2 2 + 2 5 + . . . + 2 98

Mà  7 . 2 2 + 2 5 + . . . + 2 98 ⋮ 7  

Nên  2 + 7 2 2 + 2 5 + . . . + 2 98 : 7   d ư   2

17 tháng 10 2019

Đề kiểm tra Toán 6 | Đề thi Toán 6

27 tháng 8 2017