Cho \(\bigtriangleup\)ABC vuông tại A. Trên AB và AC theo thứ tự lấy điểm M và N sao cho \(\widehat{ABN}\)=\(\frac{1}{3}\)\(\widehat{ABC}\),\(\widehat{ACM}\)=\(\widehat{ACB}\).Tính số đo \(\widehat{MNB}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xảy ra 2 trường hợp :a,OB=OC=>góc OBC=gócOCB nên góc ABCbằng góc ACB=>tam giác ABC cân tại A=>AB=AC b,OB khác OCgiả sử OB<OC.Lấy K trên OC sao cho OK=OB.Gọi H là giao điểm cua các tia phân giác các góc OBC,OCB=>tam giác OHB=tam giác OHK(c.g.c)=>góc OBH=góc OKH tam giác OBF=tam giác OKE(c.g.c)=>góc OBF=góc OKE nên góc OHK=góc OKE=.góc HKC=gócEKC tam giácOHK=tam gicOEK(c.g.c)=>góc HOK=góc EOK từ đó có góc BOC =120 độ=>OBC+OCB=60=>ABC+ACB=60.3:2=90=>GÓC bac = 90
Mình nghĩ nên sửa đề lại 1 chút :
D là 1 điểm trên AC sao cho\(\widehat{ABD}=\frac{1}{3}\widehat{ABC}\).E là 1 điểm trên AB sao cho\(\widehat{ACE}=\frac{1}{3}\widehat{ACB}\)
Sau đây là hình vẽ :
a) Vì \(MN//BC\left( {M \in AB,N \in AC} \right)\) nên \(\frac{{AM}}{{AB}} = \frac{{AN}}{{AC}}\)(định lí Thales).
b) Vì \(AM = DE\) mà \(\frac{{DE}}{{AB}} = \frac{1}{3} \Rightarrow \frac{{AM}}{{AB}} = \frac{1}{3} \Rightarrow \frac{{AN}}{{AC}} = \frac{1}{3} \Rightarrow AN = \frac{1}{3}AC\).
Lại có \(DF = \frac{1}{3}AC\) nên \(AN = DF = \frac{1}{3}AC\).
c) Vì \(MN//BC \Rightarrow \Delta ABC\backsim\Delta AMN\) (định lí)(1)
d) Dự đoán hai tam giác \(DEF\) và \(ABC\) đồng dạng.
Mk ko bt làm!! Xin lỗi bn nhiều lắm luôn.Nhưng bn on khuya v~