cho hình chữ nhật ABCD có O là giao điểm của hai đường chéo từ O kẻ một đường vuông góc cắt AB tại e cắt BC tại F lấy M và N lần lượt là trung điểm của cạnh AD và DC chững minh rằng NE vuông góc với MF
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: \(\widehat{BCD}+\widehat{BCN}=180^0\)(hai góc kề bù)
\(\Leftrightarrow\widehat{BCN}=180^0-\widehat{BCD}=180^0-90^0\)
\(\Leftrightarrow\widehat{BCN}=90^0\)
hay \(\widehat{MCN}=90^0\)
Xét tứ giác MCNF có
\(\widehat{MCN}=90^0\)(cmt)
\(\widehat{FMC}=90^0\)(FM⊥BC)
\(\widehat{FNC}=90^0\)(FN⊥DC)
Do đó: MCNF là hình chữ nhật(Dấu hiệu nhận biết hình chữ nhật)
b) Ta có: ABCD là hình chữ nhật(gt)
nên Hai đường chéo AC và BD cắt nhau tại trung điểm của mỗi đường và bằng nhau(Định lí hình chữ nhật)
mà AC cắt BD tại O(gt)
nên O là trung điểm chung của AC và BD; AC=BD
Xét ΔACF có
O là trung điểm của AC(cmt)
E là trung điểm của AF(gt)
Do đó: OE là đường trung bình của ΔACF(Định nghĩa đường trung bình của tam giác)
⇒OE//CF và \(OE=\dfrac{CF}{2}\)(Định lí 2 về đường trung bình của tam giác)
hay CF//BD(đpcm)
a) Ta có:
+) M là trung điểm của AD và MN // CD
MN là đường trung bình của hình thang ABCD
N là trung điểm của BC
+) M là trung điểm của AB và ME // AB
ME là đường trung...
Gọi H là trung điểm DC.
Chứng minh HE// IF( vì cùng //BC)
=> HE vuông FK ( vì FK vuông IF)
Tương tự HF// EI( vì cùng //AD)
=> HF vuông EK( vì EK vuông IE)
Xét tam giác EFH có EK và FK là 2 đường cao nên K là trực tâm. Suy ra HK vuông FE mà FE //DC nên HK vuông DC tại H suy ra tam giác KDC cân tại K. Nên KD=KC