K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Ta có: \(\widehat{BCD}+\widehat{BCN}=180^0\)(hai góc kề bù)

\(\Leftrightarrow\widehat{BCN}=180^0-\widehat{BCD}=180^0-90^0\)

\(\Leftrightarrow\widehat{BCN}=90^0\)

hay \(\widehat{MCN}=90^0\)

Xét tứ giác MCNF có 

\(\widehat{MCN}=90^0\)(cmt)

\(\widehat{FMC}=90^0\)(FM⊥BC)

\(\widehat{FNC}=90^0\)(FN⊥DC)

Do đó: MCNF là hình chữ nhật(Dấu hiệu nhận biết hình chữ nhật)

b) Ta có: ABCD là hình chữ nhật(gt)

nên Hai đường chéo AC và BD cắt nhau tại trung điểm của mỗi đường và bằng nhau(Định lí hình chữ nhật)

mà AC cắt BD tại O(gt)

nên O là trung điểm chung của AC và BD; AC=BD

Xét ΔACF có 

O là trung điểm của AC(cmt)

E là trung điểm của AF(gt)

Do đó: OE là đường trung bình của ΔACF(Định nghĩa đường trung bình của tam giác)

⇒OE//CF và \(OE=\dfrac{CF}{2}\)(Định lí 2 về đường trung bình của tam giác)

hay CF//BD(đpcm)

1. Cho hình thoi ABCD có số đo góc A bằng 1200. Gọi O là giao điểm của hai đường chéo AC và BD. Trên tia BC lấy điểm M sao cho  BM=4/3BC. Đường thẳng AM cắt CD tại N. Trên các đoạn thẳng AB, AD lần lượt lấy các điểm E, F sao cho CE//NF. Tính số đo góc EOF2. Cho điểm D thay đổi trên cạnh BC của tam giác nhọn ABC (D khác B và C). Từ D kẻ đường thẳng song song với AB cắt cạnh AC tại điểm N. Cũng từ...
Đọc tiếp

1. Cho hình thoi ABCD có số đo góc A bằng 1200. Gọi O là giao điểm của hai đường chéo AC và BD. Trên tia BC lấy điểm M sao cho  BM=4/3BC. Đường thẳng AM cắt CD tại N. Trên các đoạn thẳng AB, AD lần lượt lấy các điểm E, F sao cho CE//NF. Tính số đo góc EOF

2. Cho điểm D thay đổi trên cạnh BC của tam giác nhọn ABC (D khác B và C). Từ D kẻ đường thẳng song song với AB cắt cạnh AC tại điểm N. Cũng từ D kẻ đường thẳng song song với AC cắt cạnh AB tại điểm M. Tìm vị trí của D để đoạn thẳng MN có độ dài nhỏ nhất.

3.. ABCD là hình chữ nhật có AB //CD, AB = 2CB. Từ A kẻ đường thẳng vuông góc với đường chéo BD tại H. Trên HB lấy điểm K sao cho HK = HA. Từ K kẻ đường thẳng song song với AH cắt AB tại E. Lấy M trung điểm DE, tia AM cắt DB tại N, cắt DC tại P.

Tính tỷ số diện tích tam giác AND với diện tam giác PMD?

 

0
28 tháng 9 2019

Gọi H là trung điểm DC. 

Chứng minh HE// IF( vì cùng //BC)

=> HE vuông FK ( vì FK vuông IF)

Tương tự HF// EI( vì cùng //AD)

=> HF vuông  EK( vì EK vuông IE)

Xét tam giác EFH có EK và FK là 2 đường cao nên K là trực tâm. Suy ra HK vuông FE mà FE //DC nên HK vuông DC tại H suy ra tam giác KDC cân tại K. Nên KD=KC

21 tháng 4 2019

please help me

22 tháng 10 2023

a: ABCD là hình chữ nhật

=>AC=BD và AC cắt BD tại trung điểm của mỗi đường

=>O là trung điểm chung của AC và BD

Xét ΔBDC có

O,E lần lượt là trung điểm của BD,BC

=>OE là đường trung bình cuả ΔBDC

=>OE//DC và OE=DC/2

OE//DC

DC\(\perp\)BC

Do đó: OE\(\perp\)BC

=>OM vuông góc BC

Xét tứ giác OBMC có

E là trung điểm chung của OM và BC

Do đó: OBMC là hình bình hành

mà OM\(\perp\)BC

nên OBMC là hình thoi

OE=DC/2

mà AB=CD(ABCD là hình chữ nhật)

nên OE=AB/2

mà \(OE=\dfrac{OM}{2}\)

nên AB=OM

OE//CD

AB//CD

Do đó: OE//AB

=>OM//AB

Xét tứ giác ABMO có

AB//MO

AB=MO

Do đó: ABMO là hình bình hành

=>AM cắt BO tại trung điểm của mỗi đường

mà I là trung điểm của BO

nên I là trung điểm của AM

=>A,I,M thẳng hàng

b: Xét tứ giác CFME có

\(\widehat{MFC}=\widehat{ECF}=\widehat{MEC}=90^0\)

=>CFME là hình chữ nhật

=>MF//CE và MF=CE

MF//CE
E\(\in\)BC

Do đó: BE//MF

BE=CE

CE=MF

Do đó: BE=MF

Xét tứ giác BMFE có

BE//MF

BE=MF

Do đó: BMFE là hình bình hành