K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 8 2016

\(=\frac{\left(a-b\right)^3-c^3+3ab\left(a-b\right)-3abc}{a^2+2ab+b^2+b^2-2bc+c^2+c^2+2ca+a^2}\)

\(=\frac{\left(a-b-c\right)\left(a^2-2ab+b^2+ac-bc+c^2\right)+3ab\left(a-b-c\right)}{\left(a-b-c\right)^2+a^2+b^2+c^2}\)

\(=\frac{\left(\cdot a-b-c\right)\left(a^2+b^2+c^2+ac+ab-bc\right)}{4+a^2+b^2+c^2}\)

\(=\frac{2a^2+2b^2+2c^2+2ab-2bc+2ca}{4+a^2+b^2+c^2}\)

\(=\frac{\left(a-b-c\right)^2+a^2+b^2+c^2}{4+a^2+b^2+c^2}=1\)

k mk nha

c) Ta có: \(\left\{{}\begin{matrix}\dfrac{x+2}{x+1}+\dfrac{2}{y-2}=6\\\dfrac{5}{x+1}-\dfrac{1}{y-2}=3\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{x+1}+\dfrac{2}{y-2}=5\\\dfrac{5}{x+1}-\dfrac{1}{y-2}=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{5}{x+1}+\dfrac{10}{y-2}=25\\\dfrac{5}{x+1}-\dfrac{1}{y-2}=3\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{11}{y-2}=22\\\dfrac{1}{x+1}+\dfrac{2}{y-2}=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y-2=\dfrac{1}{2}\\\dfrac{1}{x+1}=1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x+1=1\\y-2=\dfrac{1}{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=\dfrac{5}{2}\end{matrix}\right.\)

a: Để phương trình có nghiệm duy nhất thì \(\left(m-3\right)\left(m+2\right)< >0\)

hay \(m\notin\left\{3;-2\right\}\)

Để phương trình vô nghiệm thì \(\left\{{}\begin{matrix}\left(m-3\right)\left(m+2\right)=0\\\left(m-3\right)\left(m-1\right)< >0\end{matrix}\right.\Leftrightarrow m=-2\)

Để phương trình có vô số nghiệm thì m=3

pi/2<a,b<pi

=>cos a<0; cos b<0; sin a>0; sin b>0

\(cosa=-\sqrt{1-\left(\dfrac{3}{5}\right)^2}=-\dfrac{4}{5};sina=\sqrt{1-\left(-\dfrac{5}{13}\right)^2}=\dfrac{12}{13}\)

tan a=-3/5:4/5=-3/4; tan b=12/13:(-5/13)=-12/5

\(tan\left(a+b\right)=\dfrac{tana+tanb}{1-tana\cdot tanb}\)

\(=\dfrac{-\dfrac{3}{4}+\dfrac{-12}{5}}{1-\dfrac{-3}{4}\cdot\dfrac{-12}{5}}=\dfrac{63}{16}\)

sin(a-b)=sina*cosb-sinb*cosa

\(=\dfrac{3}{5}\cdot\dfrac{-5}{13}-\dfrac{-4}{5}\cdot\dfrac{12}{13}=\dfrac{-15+48}{65}=\dfrac{33}{65}\)

\(M=\dfrac{\left(a-b\right)^3-c^3+3ab\left(a-b\right)-3abc}{\left(a+b\right)^2+\left(b-c\right)^2+\left(c+a\right)^2}\)

\(=\dfrac{\left(a-b-c\right)\left(a^2-2ab+b^2+ac-bc+c^2+3ab\right)}{2a^2+2b^2+2c^2+2ab-2bc+2ac}\)

\(=\dfrac{\left(a-b-c\right)\cdot\left(a^2+b^2+c^2-ab-bc+ac\right)}{2\cdot\left(a^2+b^2+c^2+ab-bc+ac\right)}=\dfrac{2}{2}=1\)

a: Để phương trình có nghiệm duy nhất thì \(\left(m-3\right)\left(m+2\right)\ne0\)

hay \(m\notin\left\{3;-2\right\}\)

Để phương trình có vô số nghiệm thì \(m-3=0\)

hay m=3

Để phương trình vô nghiệm thì \(\left\{{}\begin{matrix}\left(m-3\right)\left(m+2\right)=0\\m^2-4m+3< >0\end{matrix}\right.\Leftrightarrow m=-2\)

Ta có: l x+1l lớn hơn hoặc bằng 0, với mọi x

          l 2y -3l lớn hơn hoặc bằng 0, với mọi y

=> l x+1l + l 2y-3l lớn hơn hoặc bằng 0, với mọi x,y

=> l x+1l + l 2y-3l + 5 lớn hơn hoặc bằng 5

=> 1/ lx+1l + l2y-3l + 5 bé hơn hoặc bằng 1/5

=> 20/ lx+1l + l2y-3l+5 bé hơn hoặc bằng 20/5 = 4

Vậy max Q = 4

Dẫu "=" xảy ra <=> x = -1 ; y = 3/2

Chúc bạn học tốt!

8 tháng 8 2023

Ta có: l x+1l lớn hơn hoặc bằng 0, với mọi x

          l 2y -3l lớn hơn hoặc bằng 0, với mọi y

=> l x+1l + l 2y-3l lớn hơn hoặc bằng 0, với mọi x,y

=> l x+1l + l 2y-3l + 5 lớn hơn hoặc bằng 5

=> 1/ lx+1l + l2y-3l + 5 bé hơn hoặc bằng 1/5

=> 20/ lx+1l + l2y-3l+5 bé hơn hoặc bằng 20/5 = 4

Vậy max Q = 4

Dẫu "=" xảy ra <=> x = -1 ; y = 3/2

\(a,\left(2-\sqrt{a}\right)\left(2+\sqrt{a}\right)=4-a\)

\(b,\left(3+\sqrt{a}\right)\left(3-\sqrt{a}\right)=9-a\)

31 tháng 7 2019

a) \(\left(2-\sqrt{a}\right)\left(2+\sqrt{a}\right)=2^2-\left(\sqrt{a}\right)^2=4-a\)

b) \(\left(3+\sqrt{a}\right)\left(3-\sqrt{a}\right)=3^2-\left(\sqrt{a}\right)^2=9-a\)

1 tháng 11 2018

\(a\left(b-c\right)^2+b\left(c-a\right)^2+c\left(a-b\right)^2-a^3-b^3-c^3+4abc\)

\(=a\left(b-c\right)^2-a^3+4abc+b\left(c-a\right)^2-b^3+c\left(a-b\right)^2-c^3\)

\(=a\left[\left(b-c\right)^2+4bc-a^2\right]+b\left[\left(c-a\right)^2-b^2\right]+c\left[\left(a-b\right)^2-c^2\right]\)

\(=a\left[\left(b+c\right)^2-a^2\right]+b\left[\left(c-a\right)^2-b^2\right]+c\left[\left(a-b\right)^2-c^2\right]\)

\(=a\left(b+c+a\right)\left(b+c-a\right)+b\left(c-a+b\right)\left(c-a-b\right)+c\left(a-b+c\right)\left(a-b-c\right)\)

\(=\left(b+c-a\right)\left[a\left(b+c+a\right)+b\left(c-a-b\right)\right]+c\left(a-b+c\right)\left(a-b-c\right)\)

\(=\left(b+c-a\right)\left[ab+ac+a^2+bc-ab-b^2\right]+c\left(a-b+c\right)\left(a-b-c\right)\)

\(=\left(b+c-a\right)\left[c\left(a+b\right)+\left(a-b\right)\left(a+b\right)\right]+c\left(a-b+c\right)\left(a-b-c\right)\)

\(=\left(b+c-a\right)\left(a+b\right)\left(a-b+c\right)+c\left(a-b+c\right)\left(a-b-c\right)\)

\(=\left(a-b+c\right)\left[b^2-\left(a-c\right)^2\right]\)

\(=\left(a-b+c\right)\left(b+a-c\right)\left(b-a+c\right)\)