\(\frac{a^3-b^3-c^3-3abc}{\left(a+b\right)^2+\left(b-c\right)^2+\left(c...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(M=\dfrac{\left(a-b\right)^3-c^3+3ab\left(a-b\right)-3abc}{\left(a+b\right)^2+\left(b-c\right)^2+\left(c+a\right)^2}\)

\(=\dfrac{\left(a-b-c\right)\left(a^2-2ab+b^2+ac-bc+c^2+3ab\right)}{2a^2+2b^2+2c^2+2ab-2bc+2ac}\)

\(=\dfrac{\left(a-b-c\right)\cdot\left(a^2+b^2+c^2-ab-bc+ac\right)}{2\cdot\left(a^2+b^2+c^2+ab-bc+ac\right)}=\dfrac{2}{2}=1\)

\(S=\dfrac{\left(a+b\right)^3+c^3-3ab\left(a+b\right)-3abc}{2a^2+2b^2+2c^2-2ab-2bc-2ac}\)

\(=\dfrac{\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ac\right)}{2a^2+2b^2+2c^2-2ab-2bc-2ac}\)

\(=\dfrac{3\cdot\left(2a^2+2b^2+2c^2-2ab-2bc-2ac\right)\cdot\dfrac{1}{2}}{2a^2+2b^2+2c^2-2ab-2bc-2ac}=\dfrac{3}{2}\)

21 tháng 8 2016

\(S=-1^2+2^2-3^2+4^2-...+2016^2\)

\(=\left(2-1\right)\left(2+1\right)+\left(4-3\right)\left(4+3\right)+...+\left(2016-2015\right)\left(2016+2015\right)\)

\(=3+7+..+4031\)

\(=2033136\)

\(A=\left(4^2+1\right)\left(4^4+1\right)\left(4^8+1\right)\left(4^{16}+1\right)\left(4^{32}+1\right)-\frac{1}{15}\times4^{64}\)

\(15A=\left(4^2-1\right)\left(4^2+1\right)\left(4^4+1\right)\left(4^{16}+1\right)\left(4^{32}+1\right)-4^{64}\)

\(15A=\left(4^4-1\right)\left(4^4+1\right)\left(4^{16}+1\right)\left(4^{32}+1\right)-4^{64}\)

\(15A=\left(4^{16}-1\right)\left(4^{16}+1\right)\left(4^{32}+1\right)-4^{64}\)

\(15A=\left(4^{32}-1\right)\left(4^{32}+1\right)-4^{64}\left(4^{32}\right)\)

\(15A=4^{64}-1-4^{64}\)

\(A=-\frac{1}{15}\)

 

12 tháng 7 2016

a) \(85^2+75^2+65^2+55^2-45^2-35^2-25^2-15^2\)

\(=\left(85^2-15^2\right)+\left(75^2-25^2\right)+\left(65^2-35^2\right)+\left(55^2-45^2\right)\)

\(=\left(85-15\right)\left(85+15\right)+\left(75-25\right)\left(75+25\right)+\left(65-35\right)\left(65+35\right)+\left(55-45\right)\left(55+45\right)\)

\(=70.100+50.100+30.100+10.100\)

\(=7000+5000+3000+1000\)

\(=16000\)

12 tháng 7 2016

b) \(\frac{135^2+130.135+65^2}{135^2-65^2}\)

\(=\frac{135^2+2.60.135+65^2}{135^2-65^2}\)

\(=\frac{\left(135+65\right)^2}{\left(135-65\right)^2}\)

\(=\frac{200^2}{70^2}\) \(=\frac{200}{70}=\frac{20}{7}\)

22 tháng 7 2016

Theo đề bài: ab+bc+ca=0

=> \(\frac{1}{c}+\frac{1}{b}+\frac{1}{a}=0\)(chia 2 vế cho abc)

<=> \(\frac{1}{c^3}+\frac{1}{b^3}+\frac{1}{a^3}=3\cdot\frac{1}{abc}\)(1)

( Áp dụng tính chất x+y+z=0 suy ra \(x^3+y^3+z^3=3zxy\)- Bạn tự Cm)

Ta có: P=\(\frac{bc}{a^2}+\frac{ac}{b^2}+\frac{ab}{c^2}=\)\(\frac{abc}{a^3}+\frac{abc}{b^3}+\frac{abc}{c^3}=abc\left(\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}\right)\)(2)

Từ (1)(2)=> P=abc\(\cdot3\cdot\frac{1}{abc}\)=3

 

22 tháng 7 2016

Cảm ơn bạn nhiều nhóe!!!!!!!!!!!!!!vui

20 tháng 11 2016

chịu

14 tháng 8 2016

A B C D M N P Q K

Bạn cần thêm điều kiện AB = AD .

Gọi K là trung điểm của AD. Dễ dàng chứng minh được MNPQ là hình vuông 

Suy ra : \(S_{MNPQ}=\frac{NQ^2}{2}\)

Mặt khác, ta luôn có : \(KQ+QN\ge KN\) \(\Rightarrow QN\ge\left|KN-KQ\right|=\frac{1}{2}\left|c-a\right|\)

\(\Rightarrow QN^2\ge\frac{\left(c-a\right)^2}{4}\Rightarrow S_{MNPQ}=\frac{QN^2}{2}\ge\frac{\left(c-a\right)^2}{8}\)

Dấu "=" xảy ra khi M , Q, N thẳng hàng => AB // CD