tính tích phân của tanx.dx cận từ π/4 đến -π/4
ai giúp mình với. mình đang gấp ạ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(I=\int\limits^{\dfrac{\pi}{4}}_0xsinxdx\)
Đặt \(\left\{{}\begin{matrix}u=x\\dv=sinxdx\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}du=dx\\v=-cosx\end{matrix}\right.\)
\(\Rightarrow I=-x.cosx|^{\dfrac{\pi}{4}}_0+\int\limits^{\dfrac{\pi}{4}}_0cosxdx=\left(-x.cosx+sinx\right)|^{\dfrac{\pi}{4}}_0=-\dfrac{\pi\sqrt{2}}{8}+\dfrac{\sqrt{2}}{2}\)
Nhân phân phối sinx vào, tách ra 2 tích phân
Tích phân đầu nguyên hàm sinx là ra
Tích phân 2, đặt t=sinx => dt=cosxdx, đổi cận, thế vào, nguyên hàm lại là ra
\(tanx=-tan\dfrac{\pi}{5}\)
\(\Leftrightarrow tanx=tan\left(-\dfrac{\pi}{5}\right)\)
\(\Leftrightarrow x=-\dfrac{\pi}{5}+k\pi\)
Mình quên mất, nó nằm trong khoảng (π/2; π) nha, mình xin lỗi
\(\dfrac{xy}{2}-x+\dfrac{x^2}{4}=x\left(\dfrac{y}{2}-1+\dfrac{x}{4}\right)\)
Lâu ko ôn lại cũng hơi miss tích phân r :v
\(\int\limits^{\dfrac{-\pi}{4}}_{\dfrac{\pi}{4}}\tan x.dx\)
\(\int\tan x.dx=\int\dfrac{\sin x}{\cos x}.dx=-\int\dfrac{1}{\cos x}.d\left(\cos x\right)=-ln\left|\cos x\right|\)
\(\Rightarrow\int\limits^{\dfrac{-\pi}{4}}_{\dfrac{\pi}{4}}\tan x.dx=-ln\left|\cos\dfrac{-\pi}{4}\right|+ln\left|\cos\dfrac{\pi}{4}\right|\)