Tìm tất cả các số nguyên dương x, y thỏa mãn phương trình
5x2+y2-4xy=6y-14x+170
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(9x^2+42xy+49y^2+x^2+14x+49+y^2-6y+9-1<0\)
\(\left(3x+7y\right)^2+\left(x+7\right)^2+\left(y-3\right)^2<1\)
Vậy y=3; x=-7
\(x^2+y^2+2\left(x+y\right)-xy=0\)
\(\Leftrightarrow4x^2-4xy+4y^2+8\left(x+y\right)=0\)
\(\Leftrightarrow\left(2x-y\right)^2+4\left(2x-y\right)+4+3y^2+12y+12=-16\)
\(\Leftrightarrow\left(2x-y+2\right)^2+3\left(y+2\right)^2=-16\)
Dễ thấy VT \(\ge0\) ; VP < 0 nên phương trình vô nghiệm
\(x^2+y^2-2\left(x+y\right)=xy\)
\(\Rightarrow x^2-2x+1+y^2-2y+1=2+xy\)
\(\Rightarrow\left(x-1\right)^2+\left(y-1\right)^2=2+xy\)
Ta lại có : \(\left(x-1\right)^2+\left(y-1\right)^2\ge2\left(x-1\right)\left(y-1\right)\) (Bất đẳng thức Cauchy)
\(VT=9x^2+2\cdot3x\cdot7y+49y^2+x^2+2\cdot x\cdot7+49+y^2-2\cdot y\cdot3+9-1.\)
\(=\left(3x+7y\right)^2+\left(x+7\right)^2+\left(y-3\right)^2-1\)
VT >= -1 với mọi x;y. Để VT <0 thì :\(\hept{\begin{cases}3x+7y=0\\x+7=0\\y-3=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-7\\y=3\end{cases}}\)
biến đổi: VT=\(\left(3x+7y\right)^2+\left(x+7\right)^2+\left(y-3\right)^2< 1\)
Mà \(x,y\in Z\)Nên VT\(\in Z\)=> VT=0
Vậy: \(\hept{\begin{cases}3x+7y=0\\x+7=0\\y-3=0\end{cases}}\)<=>\(\hept{\begin{cases}x=-7\\y=3\end{cases}}\)
Bài 1 :
Phương trình <=> 2x . x2 = ( 3y + 1 ) 2 + 15
Vì \(\hept{\begin{cases}3y+1\equiv1\left(mod3\right)\\15\equiv0\left(mod3\right)\end{cases}\Rightarrow\left(3y+1\right)^2+15\equiv1\left(mod3\right)}\)
\(\Rightarrow2^x.x^2\equiv1\left(mod3\right)\Rightarrow x^2\equiv1\left(mod3\right)\)
( Vì số chính phương chia 3 dư 0 hoặc 1 )
\(\Rightarrow2^x\equiv1\left(mod3\right)\Rightarrow x\equiv2k\left(k\inℕ\right)\)
Vậy \(2^{2k}.\left(2k\right)^2-\left(3y+1\right)^2=15\Leftrightarrow\left(2^k.2.k-3y-1\right).\left(2^k.2k+3y+1\right)=15\)
Vì y ,k \(\inℕ\)nên 2k . 2k + 3y + 1 > 2k .2k - 3y-1>0
Vậy ta có các trường hợp:
\(+\hept{\begin{cases}2k.2k-3y-1=1\\2k.2k+3y+1=15\end{cases}\Leftrightarrow\hept{\begin{cases}2k.2k=8\\3y+1=7\end{cases}\Rightarrow}k\notinℕ\left(L\right)}\)
\(+,\hept{\begin{cases}2k.2k-3y-1=3\\2k.2k+3y+1=5\end{cases}\Leftrightarrow\hept{\begin{cases}2k.2k=4\\3y+1=1\end{cases}\Rightarrow}\hept{\begin{cases}k=1\\y=0\end{cases}\left(TM\right)}}\)
Vậy ( x ; y ) =( 2 ; 0 )
Bài 3:
Giả sử \(5^p-2^p=a^m\) \(\left(a;m\inℕ,a,m\ge2\right)\)
Với \(p=2\Rightarrow a^m=21\left(l\right)\)
Với \(p=3\Rightarrow a^m=117\left(l\right)\)
Với \(p>3\)nên p lẻ, ta có
\(5^p-2^p=3\left(5^{p-1}+2.5^{p-2}+...+2^{p-1}\right)\Rightarrow5^p-2^p=3^k\left(1\right)\) \(\left(k\inℕ,k\ge2\right)\)
Mà \(5\equiv2\left(mod3\right)\Rightarrow5^x.2^{p-1-x}\equiv2^{p-1}\left(mod3\right),x=\overline{1,p-1}\)
\(\Rightarrow5^{p-1}+2.5^{p-2}+...+2^{p-1}\equiv p.2^{p-1}\left(mod3\right)\)
Vì p và \(2^{p-1}\)không chia hết cho 3 nên \(5^{p-1}+2.5^{p-2}+...+2^{p-1}⋮̸3\)
Do đó: \(5^p-2^p\ne3^k\), mâu thuẫn với (1). Suy ra giả sử là điều vô lý
\(\rightarrowĐPCM\)
\(\dfrac{x}{y}=\dfrac{x+y}{y+z}=\dfrac{y}{z}\Rightarrow xz=y^2\)
\(\left(y+2\right)\left(4xz+6y-3\right)=n^2\)
\(\Rightarrow\left(y+2\right)\left(4y^2+6y-3\right)=n^2\)
Gọi \(d=ƯC\left(y+2;4y^2+6y-3\right)\)
\(\Rightarrow4y^2+6y-3-\left(y+2\right)\left(4y-2\right)⋮d\)
\(\Rightarrow1⋮d\Rightarrow d=1\)
\(\Rightarrow y+2\) và \(4y^2+6y-3\) nguyên tố cùng nhau
Mà \(\left(y+2\right)\left(4y^2+6y-3\right)\) là SCP \(\Rightarrow y+2\) và \(4y^2+6y-3\) đồng thời là SCP
\(\Rightarrow4y^2+6y-3=k^2\)
\(\Leftrightarrow\left(4y+3\right)^2-21=\left(2k\right)^2\)
\(\Rightarrow\left(4y+3-2k\right)\left(4y+3+2k\right)=21\)
Giải pt ước số trên ra \(y=2\) là số nguyên dương duy nhất thỏa mãn
Thế vào \(xz=y^2=4\Rightarrow\left(x;z\right)=\left(1;4\right);\left(4;1\right);\left(2;2\right)\)
Vậy \(\left(x;y;z\right)=\left(1;2;4\right);\left(4;2;1\right);\left(2;2;2\right)\)