cho x y z ko âm tm x+y+z=3 tìm min P=\(\sqrt{x^2+xy+y^2}\)+\(\sqrt{y^2+yz+z^2}\)+\(\sqrt{z^2+zx+x^2}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{1}{\sqrt{x^2-xy+y^2}}+\frac{1}{\sqrt{y^2-yz+z^2}}+\frac{1}{\sqrt{z^2-zx+x^2}}\)
\(=\frac{1}{\sqrt{\frac{1}{2}\left(x-y\right)^2+\frac{1}{2}\left(x^2+y^2\right)}}+\frac{1}{\sqrt{\frac{1}{2}\left(y-z\right)^2+\frac{1}{2}\left(y^2+z^2\right)}}+\frac{1}{\sqrt{\frac{1}{2}\left(z-x\right)^2+\frac{1}{2}\left(z^2+x^2\right)}}\)
\(\le\frac{1}{\sqrt{\frac{1}{2}\left(x^2+y^2\right)}}+\frac{1}{\sqrt{\frac{1}{2}\left(y^2+z^2\right)}}+\frac{1}{\sqrt{\frac{1}{2}\left(z^2+x^2\right)}}\)
\(\le\frac{2}{x+y}+\frac{2}{y+z}+\frac{2}{z+x}\le\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=1\)
\(\sqrt{x^2+2024}=\sqrt{x^2+xy+yz+zx}=\sqrt{\left(x+y\right)\left(z+x\right)}\ge\sqrt{\left(\sqrt{xz}+\sqrt{xy}\right)^2}=\sqrt{xy}+\sqrt{xz}\)
Tương tự: \(\sqrt{y^2+2024}\ge\sqrt{xy}+\sqrt{yz}\)
\(\sqrt{z^2+2024}\ge\sqrt{xz}+\sqrt{yz}\)
Cộng vế:
\(P\ge\dfrac{2\left(\sqrt{xy}+\sqrt{yz}+\sqrt{zx}\right)}{\sqrt{xy}+\sqrt{yz}+\sqrt{zx}}=2\)
Dấu "=" xảy ra khi \(x=y=z=\dfrac{2024}{3}\)
Gọi \(A=\sum\dfrac{x^3}{\sqrt{y^2+3}}\)
Theo Holder: \(A.A.\left(\left(y^2+3\right)+\left(z^2+3\right)+\left(x^2+3\right)\right)\ge\left(x^3+y^3+z^3\right)^3\)
\(\Rightarrow A^2\ge\dfrac{\left(x^3+y^3+z^3\right)^3}{x^2+y^2+z^2+9}\ge\dfrac{\left(x^3+y^3+z^3\right)^3}{x^2+y^2+z^2+3\left(xy+yz+zx\right)}=\dfrac{\left(x^3+y^3+z^3\right)^3}{\left(x+y+z\right)^2+xy+yz+zx}\ge\dfrac{\left(x^3+y^3+z^3\right)^3}{\left(x+y+z\right)^2+\dfrac{\left(x+y+z\right)^2}{3}}\)
Ta có đánh giá sau: \(x^3+y^3+z^3\ge\dfrac{\left(x^2+y^2+z^2\right)^2}{x+y+z}\ge\dfrac{\left(x+y+z\right)^3}{9}\)
\(\Rightarrow A^2\ge\dfrac{\dfrac{\left(x+y+z\right)^3}{9}}{\left(x+y+z\right)^2+\dfrac{\left(x+y+z\right)^2}{3}}=\dfrac{x+y+z}{12}\ge\dfrac{\sqrt{3\left(xy+yz+zx\right)}}{12}\ge\dfrac{1}{4}\)
\(\Rightarrow A\ge\dfrac{1}{2}\)
Thấy cái đề mà thấy khiếp ...
Ta có : \(x^2-xy+y^2=\frac{3}{4}\left(x^2-2xy+y^2\right)+\frac{1}{4}\left(x^2+2xy+y^2\right)\)
\(=\frac{3}{4}\left(x-y\right)^2+\frac{1}{4}\left(x+y\right)^2\ge\frac{1}{4}\left(x+y\right)^2\)
\(\Rightarrow\sqrt{x^2-xy+y^2}\ge\frac{x+y}{2}\)
Tương tự \(\sqrt{y^2-yz+z^2}\ge\frac{y+z}{2}\)
\(\sqrt{z^2-zx+x^2}\ge\frac{x+z}{2}\)
Do đó : \(2S\ge\frac{x+y}{x+y+2z}+\frac{y+z}{y+z+2x}+\frac{x+z}{x+z+2y}\)
\(\Rightarrow2S+3\ge\left(1+\frac{x+y}{x+y+2z}\right)+\left(1+\frac{y+z}{y+z+2x}\right)+\left(1+\frac{x+z}{x+z+2y}\right)\)
\(=2\left(x+y+z\right)\left(\frac{1}{x+y+2z}+\frac{1}{y+z+2x}+\frac{1}{x+z+2y}\right)\)
\(\ge2\left(x+y+z\right).\frac{9}{4\left(x+y+z\right)}\)\(=\frac{9}{2}\)
(Áp dụng bđt Cô-si dạng engel cho 3 số)
\(\Rightarrow2S+3\ge\frac{9}{2}\)
\(\Rightarrow S\ge\frac{3}{4}\)
Dấu "=" xảy ra \(\Leftrightarrow x=y=z\)
Vậy ..............
\(P=\frac{\sqrt{1+x^2+y^2}}{xy}+\frac{\sqrt{1+y^2+z^2}}{yz}+\frac{\sqrt{1+z^2+x^2}}{zx}\)
\(\ge\text{Σ}\frac{\sqrt{\frac{\left(1+x+y\right)^2}{3}}}{xy}\text{=}\frac{1+x+y}{xy\sqrt{3}}\)
\(=\frac{\sqrt{3}}{3}\left(\frac{1+x+y}{xy}+\frac{1+y+z}{yz}+\frac{1+z+x}{zx}\right)\)
\(=\frac{\sqrt{3}}{3}\left(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{xz}+\frac{1}{x}+\frac{1}{y}+\frac{1}{y}+\frac{1}{z}+\frac{1}{z}+\frac{1}{x}\right)\)
\(=\frac{\sqrt{3}}{3}\left(x+y+z+2xy+2yz+2zx\right)\)\(\ge\frac{\sqrt{3}}{3}\left(3\sqrt[3]{xyz}+2\cdot3\sqrt[3]{x^2y^2z^2}\right)=\frac{\sqrt{3}}{3}\left(3+6\right)=3\sqrt{3}\)
Dấu = xảy ra khi \(x=y=z=1\)
1. Với mọi số thực x;y;z ta có:
\(x^2+y^2+z^2+\dfrac{1}{2}\left(x^2+1\right)+\dfrac{1}{2}\left(y^2+1\right)+\dfrac{1}{2}\left(z^2+1\right)\ge xy+yz+zx+x+y+z\)
\(\Leftrightarrow\dfrac{3}{2}P+\dfrac{3}{2}\ge6\)
\(\Rightarrow P\ge3\)
\(P_{min}=3\) khi \(x=y=z=1\)
1.1
ĐKXĐ: ...
Đặt \(\left\{{}\begin{matrix}\dfrac{1}{\sqrt{x}}=a>0\\\dfrac{1}{\sqrt{y}}=b>0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a+\sqrt{2-b^2}=2\\b+\sqrt{2-a^2}=2\end{matrix}\right.\)
\(\Rightarrow a-b+\sqrt{2-b^2}-\sqrt{2-a^2}=0\)
\(\Leftrightarrow a-b+\dfrac{\left(a-b\right)\left(a+b\right)}{\sqrt{2-b^2}+\sqrt{2-a^2}}=0\)
\(\Leftrightarrow a=b\Leftrightarrow x=y\)
Thay vào pt đầu:
\(a+\sqrt{2-a^2}=2\Rightarrow\sqrt{2-a^2}=2-a\) (\(a\le2\))
\(\Leftrightarrow2-a^2=4-4a+a^2\Leftrightarrow2a^2-4a+2=0\)
\(\Rightarrow a=1\Rightarrow x=y=1\)
2.
\(\left\{{}\begin{matrix}x^2+xy+y^2=7\\\left(x^2+y^2\right)^2-x^2y^2=21\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x^2+xy+y^2=7\\\left(x^2+xy+y^2\right)\left(x^2-xy+y^2\right)=21\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x^2+xy+y^2=7\\x^2-xy+y^2=3\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}3x^2+3xy+3y^2=21\\7x^2-7xy+7y^2=21\end{matrix}\right.\)
\(\Rightarrow4x^2-10xy+4y^2=0\)
\(\Leftrightarrow2\left(2x-y\right)\left(x-2y\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}y=2x\\y=\dfrac{1}{2}x\end{matrix}\right.\)
Thế vào pt đầu
...
\(\frac{\left(x+y+z\right)^2}{3}\ge xy+yz+zx\Rightarrow x+y+z\ge3\)
\(P=\frac{x^2}{\sqrt{\left(x+2\right)\left(x^2-2x+4\right)}}+\frac{y^2}{\sqrt{\left(y+2\right)\left(y^2-2y+4\right)}}+\frac{z^2}{\sqrt{\left(z+2\right)\left(z^2-2z+4\right)}}\)
\(\Rightarrow P\ge\frac{\left(x+y+z\right)^2}{\sqrt{\left(x+2\right)\left(x^2-2x+4\right)}+\sqrt{\left(y+2\right)\left(y^2-2y+4\right)}+\sqrt{\left(z+2\right)\left(z^2-2z+4\right)}}\)
\(\Rightarrow P\ge\frac{2\left(x+y+z\right)^2}{\left(x+2+x^2-2x+4\right)+\left(y+2+y^2-2y+4\right)+\left(z+2+z^2-2z+4\right)}\)
\(\Rightarrow P\ge\frac{2\left(x+y+z\right)^2}{\left(x^2+y^2+z^2\right)-\left(x+y+z\right)+18}=\frac{2\left(x+y+z\right)^2}{\left(x+y+z\right)^2-\left(x+y+z\right)-2\left(xy+yz+zx\right)+18}=\frac{2\left(x+y+z\right)^2}{\left(x+y+z\right)^2-\left(x+y+z\right)+12}\)
Dự đoán Min P=1 khi x+y+z=3
Đặt \(t=x+y+z\ge3\)
\(\Rightarrow P\ge\frac{2t^2}{t^2-t+12}\Rightarrow P-1\ge\frac{t^2+t-12}{t^2-t+12}=\frac{\left(t-3\right)\left(t+4\right)}{t^2-t+12}\ge0\)
\(\Rightarrow P\ge1\)
ta có
\(4\left(x^2+xy+y^2\right)\ge3\left(x+y\right)^2\Leftrightarrow\left(x-y\right)^2\ge0\) vì thế \(\sqrt{x^2+xy+y^2}\ge\frac{\sqrt{3}}{2}\left(x+y\right)\)
hoàn toàn tương tự ta sẽ có
\(P\ge\frac{\sqrt{3}}{2}\left(x+y\right)+\frac{\sqrt{3}}{2}\left(y+z\right)+\frac{\sqrt{3}}{2}\left(x+z\right)\)
hay
\(P\ge\sqrt{3}\left(x+y+z\right)=3\sqrt{3}\)
dấu bằng xảy ra khi x=y=z=1
\(P=\sqrt{x^2+xy+y^2}+\sqrt{y^2+yz+z^2}+\sqrt{z^2+zx+x^2}\)\(=\sqrt{\frac{3}{4}\left(x+y\right)^2+\frac{1}{4}\left(x-y\right)^2}+\sqrt{\frac{3}{4}\left(y+z\right)^2+\frac{1}{4}\left(y-z\right)^2}+\sqrt{\frac{3}{4}\left(z+x\right)^2+\frac{1}{4}\left(x-y\right)^2}\)\(\ge\sqrt{\frac{3}{4}\left(x+y\right)^2}+\sqrt{\frac{3}{4}\left(y+z\right)^2}+\sqrt{\frac{3}{4}\left(z+x\right)^2}=\sqrt{3}\left(x+y+z\right)=3\sqrt{3}\)
Ta có:Đẳng thức xảy ra khi x = y = z = 1