Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có \(\frac{n\left(2n-1\right)}{26}=k^2\Leftrightarrow2n^2-n-26k^2=0\)
\(\Delta=208k^2+1=t^2\)(vì n nguyên dương)
\(\Rightarrow\left(t+4\sqrt{13}k\right)\left(t-4\sqrt{13}k\right)=1\)
\(\Leftrightarrow\hept{\begin{cases}t+4\sqrt{13}k=1\\t-4\sqrt{13}k=1\end{cases}\Leftrightarrow\hept{\begin{cases}k=0\\t=1\end{cases}}}\)
Thế vào tìm được \(\orbr{\begin{cases}n=0\\n=\frac{1}{2}\end{cases}}\)
Vậy không có giá trị n nguyên dương nào thỏa mãn cái đó
\(\frac{n\left(2n-1\right)}{26}\text{ là SCP }\Leftrightarrow n\left(2n-1\right)=26k^2\)
\(\Delta_n=208k^2+1=y^2\Leftrightarrow y^2-208k^2=1\underrightarrow{\text{PELL}}\)
\(k=\pm\frac{\left(649-180\sqrt{13}\right)^m-\left(649+180\sqrt{13}\right)^m}{8\sqrt{13}}\)
\(n=\frac{1}{8}\left[-\left(649-180\sqrt{13}\right)^m-\left(649+180\sqrt{13}\right)^m+2\right]\left(m\inℤ,m\ge0\right)\)
Do \(n^2+2n+6\) là số chính phương nên đặt: \(n^2+2n+6=a^2\)
\(\Rightarrow n^2+2n+1+5=a^2\)
\(\Rightarrow\left(n^2+2n+1\right)+5=a^2\)
\(\Rightarrow\left(n+1\right)^2+5=a^2\)
\(\Rightarrow a^2-\left(n+1\right)^2=5\)
\(\Rightarrow\left(a+n+1\right)\left(a-n-1\right)=5\)
\(\Rightarrow\left(a+n+1\right)\left(a-n-1\right)=5\cdot1\)
Ta có: \(a+n+1>a-n-1\)
\(\Rightarrow\left\{{}\begin{matrix}a+n+1=5\\a-n-1=1\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}a+n=4\\a-n=2\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}a=\left(4+2\right):2\\n=\left(4-2\right):2\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}a=3\\n=1\end{matrix}\right.\)
Vậy: \(n^2+2n+6\) là số chính phương khi \(n=1\)