K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 7 2019

Từ đề bài suy ra \(\frac{1}{a+1}\ge\left(1-\frac{1}{b+1}\right)+\left(1-\frac{1}{c+1}\right)=\frac{b}{b+1}+\frac{c}{c+1}\ge2\sqrt{\frac{bc}{\left(b+1\right)\left(c+1\right)}}\)

Tương tự với hai bđt kia rồi nhân theo vế suy ra

\(\frac{1}{\left(a+1\right)\left(b+1\right)\left(c+1\right)}\ge\frac{8abc}{\left(a+1\right)\left(b+1\right)\left(c+1\right)}\)

Do a, b, c>0 nên (a+1)(b+1)(c+1) > 0 suy ra:

\(1\ge8abc\Leftrightarrow abc\le\frac{1}{8}\left(đpcm\right)\)

Đẳng thức xảy ra khi a = b = c = 1/2

26 tháng 10 2017

\(\frac{1}{1+a}=\)\(1-\frac{1}{1+b}+1-\frac{1}{1+c}=\frac{b}{1+b}+\frac{c}{1+c}\ge\frac{2\sqrt{bc}}{\sqrt{\left(1+b\right)\left(1+c\right)}}\)

tt nhan vao ta co

\(\frac{1}{\left(1+a\right)\left(1+b\right)\left(1+c\right)}\ge\frac{8abc}{\left(1+a\right)\left(1+b\right)\left(1+c\right)}\)

\(\Rightarrow abc\le\frac{1}{8}\)

26 tháng 10 2017

trong mục câu hỏi tương tự có đó

6 tháng 7 2016

Ta có 

\(\frac{1}{1+a}+\frac{1}{1+b}+\frac{1}{1+c}\ge2\)

\(\Rightarrow\frac{1}{1+a}\ge1-\frac{1}{1+b}+1-\frac{1}{1+c}\)

\(\Rightarrow\frac{1}{1+a}\ge\frac{1+b-1}{1+b}+\frac{1+c-1}{1+c}\)

\(\Rightarrow\frac{1}{1+a}\ge\frac{b}{1+b}+\frac{c}{1+c}\le2\sqrt{\frac{bc}{\left(1+b\right)\left(1+c\right)}}\)( nhỏ hơn vậy do bất đẳng thức Cosy với 2 số)

tương tư ta chứng minh được

\(\hept{\begin{cases}\frac{1}{1+b}\ge2\sqrt{\frac{ac}{\left(1+a\right)\left(1+c\right)}}\\\frac{1}{1+c}\ge2\sqrt{\frac{ab}{\left(1+a\right)\left(1+b\right)}}\end{cases}}\)

Nhân vế theo vế của 3 bất đẳng thức vừa chứng mình được 

\(\frac{1}{1+a}.\frac{1}{1+b}.\frac{1}{1+c}\ge2\sqrt{\frac{bc}{\left(1+b\right)\left(1+c\right)}}.2\sqrt{\frac{ac}{\left(1+a\right)\left(1+c\right)}}.2\sqrt{\frac{ab}{\left(1+a\right)\left(1+b\right)}}\)

\(\Rightarrow\frac{1}{\left(1+a\right)\left(1+b\right)\left(1+c\right)}\ge8\sqrt{\frac{a^2b^2c^2}{\left(1+a\right)^2\left(1+b\right)^2\left(1+c\right)^2}}\)

\(\Rightarrow\frac{1}{\left(1+a\right)\left(1+b\right)\left(1+c\right)}\ge8abc.\frac{1}{\left(1+a\right)\left(1+b\right)\left(1+c\right)}\)

\(\Rightarrow\frac{1}{\left(1+a\right)\left(1+b\right)\left(1+c\right)}:\frac{1}{\left(1+a\right)\left(1+b\right)\left(1+c\right)}\ge8abc\)

\(\Rightarrow\frac{\left(1+a\right)\left(1+b\right)\left(1+c\right)}{\left(1+a\right)\left(1+b\right)\left(1+c\right)}\ge8abc\)

\(\Rightarrow1\ge8abc\Rightarrow\frac{1}{8}\ge abc\)

Ủng hộ cho mình 1 cái T I C K nha . Cảm ơn bạn rất nhiều

____________________________CHÚC BẠN HỌC TỐT NHA ________________________________

6 tháng 7 2016

Dấu "=" nữa Tùng ơi!

Cơ mà Linh k rùi, vất vả quá! :D

NV
17 tháng 11 2019

Chắc bạn ghi nhầm đề, ko có số hạng \(\frac{1}{1+d}\)

\(\frac{1}{1+a}+\frac{1}{1+b}+\frac{1}{1+c}\ge2\)

\(\Leftrightarrow\frac{1}{1+a}\ge1-\frac{1}{1+b}+1-\frac{1}{1+c}=\frac{b}{1+b}+\frac{c}{1+c}\ge2\sqrt{\frac{bc}{\left(1+b\right)\left(1+c\right)}}\)

Tương tự ta có:

\(\frac{1}{1+b}\ge2\sqrt{\frac{ca}{\left(1+c\right)\left(1+a\right)}}\) ; \(\frac{1}{1+c}\ge2\sqrt{\frac{ab}{\left(1+a\right)\left(1+b\right)}}\)

Nhân vế với vế:

\(\frac{1}{\left(1+a\right)\left(1+b\right)\left(1+c\right)}\ge\frac{8abc}{\left(1+a\right)\left(1+b\right)\left(1+c\right)}\)

\(\Leftrightarrow abc\le\frac{1}{8}\)

Dấu "=" xảy ra khi \(a=b=c=\frac{1}{2}\)

17 tháng 11 2019

Cảm ơn bạn. Mk viết nhầm đề và kiểm tra lại mk làm đc rồi

4 tháng 10 2018

Ta có: \(\frac{1}{a+1}\ge2-\frac{1}{b+1}-\frac{1}{c+1}=\left(1-\frac{1}{b+1}\right)+\left(1-\frac{1}{c+1}\right)=\frac{b}{b+1}+\frac{c}{c+1}\ge2\sqrt{\frac{bc}{\left(b+1\right)\left(c+1\right)}}\)

Tương tự \(\frac{1}{b+1}\ge\frac{c}{c+1}+\frac{a}{a+1}\ge2\sqrt{\frac{ca}{\left(c+1\right)\left(a+1\right)}}\)

               \(\frac{1}{c+1}\ge\frac{a}{a+1}+\frac{b}{b+1}\ge2\sqrt{\frac{ab}{\left(a+1\right)\left(b+1\right)}}\)

Nhân từng vế, ta có: 

\(\frac{1}{\left(a+1\right)\left(b+1\right)\left(c+1\right)}\ge\frac{8abc}{\left(a+1\right)\left(b+1\right)\left(c+1\right)}\)

\(\Rightarrow abc\le\frac{1}{8}\)

DD
22 tháng 1 2021

\(\frac{1}{a+1}\ge1-\frac{1}{b+1}+1-\frac{1}{c+1}=\frac{b}{b+1}+\frac{c}{c+1}\ge2\sqrt{\frac{bc}{\left(b+1\right)\left(c+1\right)}}\).

Tương tự ta có: \(\frac{1}{b+1}\ge2\sqrt{\frac{ac}{\left(a+1\right)\left(c+1\right)}}\)\(\frac{1}{c+1}\ge2\sqrt{\frac{ab}{\left(a+1\right)\left(b+1\right)}}\).

Nhân 3 bất đẳng thức trên theo vế ta được: 

\(\frac{1}{\left(a+1\right)\left(b+1\right)\left(c+1\right)}\ge\frac{8abc}{\left(a+1\right)\left(b+1\right)\left(c+1\right)}\)

\(\Leftrightarrow abc\le\frac{1}{8}\).

20 tháng 11 2016

a)Ta có:\(\left(p-a\right)\left(p-b\right)\le\frac{2p-b-a}{2}=\frac{c^2}{4}\)

Tương tự ta có: \(\left(p-a\right)\left(p-c\right)\le\frac{b^2}{4};\left(p-b\right)\left(p-c\right)\le\frac{c^2}{4}\)

\(\Rightarrow\left[\left(p-a\right)\left(p-b\right)\left(p-c\right)\right]^2\le\left(\frac{abc}{8}\right)^2\)

\(\Rightarrow\left(p-a\right)\left(p-b\right)\left(p-c\right)\le\frac{abc}{8}\)

b)\(VT=\frac{2}{-a+b+c}+\frac{2}{a-b+c}+\frac{2}{a+b-c}\)

\(=\frac{1}{-a+b+c}+\frac{1}{a-b+c}+\frac{1}{a+b-c}+\frac{1}{-a+b+c}+\frac{1}{a-b+c}+\frac{1}{a+b-c}\)

\(\ge2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)

c giải sau ăn cơm đã