Cho \(a^2+b^2+c^2=a^3+b^3+c^3=1\). Tính \(S=a^2+b^9+c^{2020}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a^2+b^2+c^2=1\Rightarrow-1\le a,b,c\le1;a^3-a^2+b^3-b^2+c^3-c^2\)
\(=a^2\left(a-1\right)+b^2\left(b-1\right)+c^2\left(c-1\right)=0\Rightarrow a^2\left(a-1\right)=0;b^2\left(b-1\right)=0;c^2\left(c-1\right)=0\)
\(\text{kết hợp với:}a^3+b^3+c^3=1\Rightarrow\text{có 2 số bằng 0; 1 số bằng 1}\Rightarrow S=1\)
Ta có : a + b + c = 6
=> ( a + b + c ) ^ 2 = 6 ^ 2 = 36
=> a ^ 2 + b ^ 2 + c ^ 2 + 2 x ( ab + bc + ca ) = 36
=> 12 + 2 x ( ab + bc + ca ) = 36 ( vì a ^ 2 + b ^ 2 + c ^ 2 = 12 )
=> 2 x ( ab + bc + ca ) = 36 - 12
=> 2 x ( ab + bc + ca ) = 24
=> ab + bc + ca = 12
Do đó ab + bc + ca = a ^ 2 + b ^ 2 + c ^ 2
=> a = b = c = 2 ( vì a + b + c = 6 )
Khi đó : P = ( 2 - 3 ) ^ 2020 + ( 2 - 3 ) ^ 2020 + ( 2 - 3 ) ^ 2020
=> P = ( - 1 ) ^ 2020 + ( - 1 ) ^ 2020 + ( - 1 ) ^ 2020
=> P = 1 + 1 + 1 = 3
Vậy P = 3
Cách 2:
Ta có: \(a^2+b^2+c^2=12\)
\(\Rightarrow a^2+b^2+c^2-12=0\)
\(\Rightarrow a^2+b^2+c^2-24+12=0\)
\(\Rightarrow a^2+b^2+c^2-4\left(a+b+c\right)+12=0\)(Vì a+b+c=6)
\(\Rightarrow\left(a^2-4a+4\right)+\left(b^2-4b+4\right)+\left(c^2-4c+4\right)=0\)
\(\Rightarrow\left(a-2\right)^2+\left(b-2\right)^2+\left(c-2\right)^2=0\)
\(\Rightarrow\hept{\begin{cases}\left(a-2\right)^2=0\\\left(b-2\right)^2=0\\\left(c-2\right)^2=0\end{cases}}\Rightarrow\hept{\begin{cases}a-2=0\\b-2=0\\c-2=0\end{cases}}\Rightarrow a=b=c=2\)
Thay a=b=c=2 vào P, ta có:
\(P=\left(2-3\right)^{2020}+\left(2-3\right)^{2020}+\left(2-3\right)^{2020}\)
\(=1+1+1=3\)
P/s: Bài bạn nguyễn tuấn thảo , chỗ để suy ra a=b=c=2 lm tắt quá nhé :))
Ta có: \(ab+bc+ca=\frac{\left(a+b+c\right)^2-a^2-b^2-c^2}{2}=0\)
\(a^3+b^3+c^3-3abc=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)=1\)
\(\Rightarrow abc=0\)
Từ đó ta có hpt\(\hept{\begin{cases}a+b+c=1\\ab+bc+ca=0\\abc=0\end{cases}}\). Theo định lý Viet suy ra a,b,c là các nghiệm của \(x^3-x^2=0\Leftrightarrow x.x\left(x-1\right)=0\Rightarrow\orbr{\begin{cases}x=0\\x=1\end{cases}}\)
\(\Rightarrow\left(a,b,c\right)=\left(1,0,0\right)\)và các hoán vị
Khi đó: \(a^{2019}+b^{2020}+c^{2021}=1\)
Ta có: \(\frac{a^3+b^3}{\sqrt{a^2-ab+b^2}}=\frac{\left(a+b\right)\left(a^2-ab+b^2\right)}{\sqrt{a^2-ab+b^2}}=\left(a+b\right)\sqrt{a^2-ab+b^2}\)
\(=\sqrt{a+b}\sqrt{\left(a+b\right)\left(a^2-ab+b^2\right)}=\sqrt{a+b}\sqrt{a^3+b^3}\)
\(=\sqrt{\left(a+b\right)\left(a^3+b^3\right)}=\sqrt{\left(\sqrt{a}^2+\sqrt{b}^2\right)\left(\sqrt{a^3}^{^2}+\sqrt{b^3}^{^2}\right)}\)
Áp dụng BĐT Bunhi... ta có:
\(\left(\sqrt{a}^2+\sqrt{b}^2\right)\left(\sqrt{a^3}^{^2}+\sqrt{b^3}^{^2}\right)^2\ge\left(\sqrt{a}\sqrt{a^3}+\sqrt{b}\sqrt{b^3}\right)^2\)
\(\Rightarrow\sqrt{\left(\sqrt{a}^2+\sqrt{b}^2\right)+\left(\sqrt{a^3}^{^2}+\sqrt{b^3}^{^2}\right)}\)\(\ge\sqrt{a}\sqrt{a^3}+\sqrt{b}\sqrt{b^3}=\sqrt{a^4}+\sqrt{b^4}=a^2+b^2\)
\(\Rightarrow\frac{a^3+b^3}{\sqrt{a^2-ab+b^2}}\ge a^2+b^2\) (1)
Tương tự ta có: \(\frac{b^3+c^3}{\sqrt{b^2-bc+c^2}}\ge b^2+c^2\) (2)
\(\frac{c^3+d^3}{\sqrt{c^2-cd+d^2}}\ge c^2+d^2\)(3)
\(\frac{d^3+a^3}{\sqrt{d^2-da+a^2}}\ge d^2+a^2\)(4)
Cộng vế với vế của 1,2,3,4 ta được:
\(\frac{a^3+b^3}{\sqrt{a^2-ab+b^2}}+\frac{b^3+c^3}{\sqrt{b^2-bc+c^2}}+\frac{c^3+d^3}{\sqrt{c^2-cd+d^2}}+\frac{d^3+a^3}{\sqrt{d^2-da+a^2}}\)\(\ge2\left(a^2+b^2+c^2+d^2\right)\left(\text{đ}pcm\right)\)
Hoặc \(\left(a+b\right)\sqrt{a^2-ab+b^2}\ge a^2+b^2\Leftrightarrow ab\left(a-b\right)^2\ge0\)(bình phương lên)
Vì \(a^2+b^2+c^2=1\)
\(\Rightarrow-1\le a,b,c\le1\)
\(\Rightarrow a-1\le0;b-1\le0;c-1\le0\)
Lây cai xau trừ cai trươc được
\(\left(a^3+b^3+c^3\right)-\left(a^2+b^2+c^2\right)=0\)
\(\Leftrightarrow a^2\left(a-1\right)+b^2\left(b-1\right)+c^2\left(c-1\right)=0\)
Ta co \(VT\le0\)
Dâu = xảy ra khi: \(\left(a,b,c\right)=\left\{0,0,1;0,1,0;1,0,0\right\}\)
\(\Rightarrow S=1\)
Ta có :\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=6\Rightarrow\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2=36\Rightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\right)=36\)
\(\Rightarrow\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}=12\)
\(\Rightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}=\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\)
\(\Rightarrow\frac{2}{a^2}+\frac{2}{b^2}+\frac{2}{c^2}=\frac{2}{ab}+\frac{2}{bc}+\frac{2}{ca}\)
=> \(\frac{2}{a^2}+\frac{2}{b^2}+\frac{2}{c^2}-\frac{2}{ab}-\frac{2}{bc}-\frac{2}{ca}=0\)
=> \(\left(\frac{1}{a^2}-\frac{2}{ab}+\frac{1}{b^2}\right)+\left(\frac{1}{b^2}-\frac{2}{bc}+\frac{1}{c^2}\right)+\left(\frac{1}{c^2}-\frac{2}{ac}+\frac{1}{a^2}\right)=0\)
=> \(\left(\frac{1}{a}-\frac{1}{b}\right)^2+\left(\frac{1}{b}-\frac{1}{c}\right)^2+\left(\frac{1}{c}-\frac{1}{a}\right)^2=0\)
=> \(\hept{\begin{cases}\frac{1}{a}-\frac{1}{b}=0\\\frac{1}{b}-\frac{1}{c}=0\\\frac{1}{c}-\frac{1}{a}=0\end{cases}}\Rightarrow\frac{1}{a}=\frac{1}{b}=\frac{1}{c}\)
Khi đó \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=6\Leftrightarrow3\frac{1}{a}=6\Rightarrow\frac{1}{a}=2\Leftrightarrow\frac{1}{a}=\frac{1}{b}=\frac{1}{c}=2\)
Khi đó Đặt P = \(\left(\frac{1}{a}-3\right)^{2020}+\left(\frac{1}{b}-3\right)^{2020}+\left(\frac{1}{c}-3\right)^{2020}\)
= (2 - 3)2020 + (2 - 3)2020 + (2 - 3)2020
= 1 + 1 + 1 = 3
Vậy P = 3
\(\Rightarrow a,b,c\in\left\{-1;1\right\}\\ \Rightarrow a^3+b^3+c^3-\left(a^2+b^2+c^2\right)\\ =a^2\left(a-1\right)+b^2\left(b-1\right)+c^2\left(c-1\right)\le0\\ \Rightarrow a^3+b^3+c^3\le1\\ \Rightarrow a,b,c.nhận.2.Giá.trị.là.0.hay.1\\ \Rightarrow b^{2012}=b^2;c^{2013}=c^2\\ \Rightarrow S=a^2+b^{2012}+c^{2013}=1\)
Ta có: \(a^2+b^2+c^2=1\Rightarrow0\le a^2,b^2,c^2\le1\Rightarrow-1\le a,b,c\le1\Rightarrow\hept{\begin{cases}a-1\le0\\b-1\le0\\c-1\le0\end{cases}}\)
Từ giả thiết suy ra \(\left(a^2+b^2+c^2\right)-\left(a^3+b^3+c^3\right)=0\)
\(\Rightarrow a^2\left(1-a\right)+b^2\left(1-b\right)+c^2\left(1-c\right)=0\)(*)
Mà dễ có: \(a^2\left(1-a\right),b^2\left(1-b\right),c^2\left(1-c\right)\le0\)nên (*) xảy ra khi \(a^2\left(1-a\right)=b^2\left(1-b\right)=c^2\left(1-c\right)=0\)hay có 2 số bằng 0, 1 số bằng 1 trong 3 số a,b,c
\(\Rightarrow S=1\)