Cho hàm số
\(f_{\left(x\right)}=a.x+b\)
Biết \(f_{\left(2\right)}=3.f_{\left(1\right)}=4\)
Tính \(f_{\left(4\right)}+2.b\)
Giúp mình càng sớm càng tốt nhá các bạn thân yêu....mai mình nộp rồi
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi Q(x); P(x) lần lượt là thương của f(x) cho x- 1; f(x) cho x + 2.
Vì (x -1)(x +2) có dạng bậc 2 => đa thức dư có dạng ax + b.
Ta có: f(x) = (x - 1). Q(x) + 4
f(x) = (x + 2) . P(x) + 1
f(x) = (x - 1)(x +2). 5x2 + ax + b
Tại x = 1 thì f(1) = 4 = a + b (1)
Tại x = -2 thì f(-2) = 1 = -2a + b (2)
Trừ vế (1) cho (2) được:
\(a+b+2a-b=3\)
\(\Rightarrow a=1\)
Khi đó: \(b=3\)
\(\Rightarrow f\left(x\right)=\left(x-1\right)\left(x+2\right).5x^2+x+3\)
= (x2 +x - 2). 5x2 +x + 3
= 5x4 + 5x3 - 5x2 + x + 3.
Mk làm theo đề bạn nói cho mk: c) khi chia cho (x-1)(x+2) thì đc thương là 5x^2 và còn dư
Câu hỏi của Nguyễn Bá Huy h - Toán lớp 7 - Học toán với OnlineMath
Em tham khảo nhé!
\(f\left(x\right)=\frac{2x+1}{x^2\left(x+1\right)^2}=\frac{x^2+2x+1-x^2}{x^2\left(x+1\right)^2}=\frac{\left(x+1\right)^2-x^2}{x^2\left(x+1\right)^2}\)
\(=\frac{1}{x^2}-\frac{1}{\left(x+1\right)^2}\)
\(\Rightarrow f\left(1\right)=\frac{1}{1^2}-\frac{1}{2^2}\)
\(f\left(2\right)=\frac{1}{2^2}-\frac{1}{3^2}\)
\(f\left(3\right)=\frac{1}{3^2}-\frac{1}{4^2}\)
...
\(f\left(x\right)=\frac{1}{x^2}-\frac{1}{\left(x+1\right)^2}\)
Lúc đó: \(f\left(1\right)+f\left(2\right)+f\left(3\right)+...+f\left(x\right)=\frac{1}{1^2}-\frac{1}{2^2}+\frac{1}{2^2}-\frac{1}{3^2}+\frac{1}{3^2}\)
\(-\frac{1}{4^2}+...+\frac{1}{x^2}-\frac{1}{\left(x+1\right)^2}=1-\frac{1}{\left(x+1\right)^2}\)
Thay về đầu bài, ta được: \(1-\frac{1}{\left(x+1\right)^2}=\frac{2y\left(x+1\right)^3-1}{\left(x+1\right)^2}-19+x\)
\(\Leftrightarrow1-\frac{1}{\left(x+1\right)^2}=2y\left(x+1\right)-\frac{1}{\left(x+1\right)^2}-19+x\)
\(\Leftrightarrow2y\left(x+1\right)+\left(x+1\right)=21\)
\(\Leftrightarrow\left(x+1\right)\left(2y+1\right)=21\)
\(\Rightarrow\hept{\begin{cases}x+1\\2y+1\end{cases}}\inƯ\left(21\right)=\left\{\pm1;\pm3;\pm7;\pm21\right\}\)
Lập bảng:
\(x+1\) | \(1\) | \(3\) | \(7\) | \(21\) | \(-1\) | \(-3\) | \(-7\) | \(-21\) |
\(2y+1\) | \(21\) | \(7\) | \(3\) | \(1\) | \(-21\) | \(-7\) | \(-3\) | \(-1\) |
\(x\) | \(0\) | \(2\) | \(6\) | \(20\) | \(-2\) | \(-4\) | \(-8\) | \(-22\) |
\(y\) | \(10\) | \(3\) | \(1\) | \(0\) | \(-11\) | \(-4\) | \(-2\) | \(-1\) |
Mà \(x\ne0\)nên \(\left(x,y\right)\in\left\{\left(2,3\right);\left(6,1\right);\left(20,0\right);\left(-2,-11\right);\left(-4,-4\right);\left(-8,-2\right)\right\}\)\(\left(-22,-1\right)\)