K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 4 2019

Câu hỏi của Nguyễn Bá Huy h - Toán lớp 7 - Học toán với OnlineMath

Em tham khảo nhé!

4 tháng 9 2019

\(f\left(x\right)=\frac{2x+1}{x^2\left(x+1\right)^2}=\frac{x^2+2x+1-x^2}{x^2\left(x+1\right)^2}=\frac{\left(x+1\right)^2-x^2}{x^2\left(x+1\right)^2}\)

\(=\frac{1}{x^2}-\frac{1}{\left(x+1\right)^2}\)

\(\Rightarrow f\left(1\right)=\frac{1}{1^2}-\frac{1}{2^2}\)

\(f\left(2\right)=\frac{1}{2^2}-\frac{1}{3^2}\)

\(f\left(3\right)=\frac{1}{3^2}-\frac{1}{4^2}\)

...

\(f\left(x\right)=\frac{1}{x^2}-\frac{1}{\left(x+1\right)^2}\)

Lúc đó: \(f\left(1\right)+f\left(2\right)+f\left(3\right)+...+f\left(x\right)=\frac{1}{1^2}-\frac{1}{2^2}+\frac{1}{2^2}-\frac{1}{3^2}+\frac{1}{3^2}\)

\(-\frac{1}{4^2}+...+\frac{1}{x^2}-\frac{1}{\left(x+1\right)^2}=1-\frac{1}{\left(x+1\right)^2}\)

Thay về đầu bài, ta được: \(1-\frac{1}{\left(x+1\right)^2}=\frac{2y\left(x+1\right)^3-1}{\left(x+1\right)^2}-19+x\)

\(\Leftrightarrow1-\frac{1}{\left(x+1\right)^2}=2y\left(x+1\right)-\frac{1}{\left(x+1\right)^2}-19+x\)

\(\Leftrightarrow2y\left(x+1\right)+\left(x+1\right)=21\)

\(\Leftrightarrow\left(x+1\right)\left(2y+1\right)=21\)

\(\Rightarrow\hept{\begin{cases}x+1\\2y+1\end{cases}}\inƯ\left(21\right)=\left\{\pm1;\pm3;\pm7;\pm21\right\}\)

Lập bảng:

\(x+1\)\(1\)\(3\)\(7\)\(21\)\(-1\)\(-3\)\(-7\)\(-21\)
\(2y+1\)\(21\)\(7\)\(3\)\(1\)\(-21\)\(-7\)\(-3\)\(-1\)
\(x\)\(0\)\(2\)\(6\)\(20\)\(-2\)\(-4\)\(-8\)\(-22\)
\(y\)\(10\)\(3\)\(1\)\(0\)\(-11\)\(-4\)\(-2\)\(-1\)

Mà \(x\ne0\)nên \(\left(x,y\right)\in\left\{\left(2,3\right);\left(6,1\right);\left(20,0\right);\left(-2,-11\right);\left(-4,-4\right);\left(-8,-2\right)\right\}\)\(\left(-22,-1\right)\)