\(2x^2-3\) x + 5

\(f_{\left(0\right)}=\)

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 6 2017

Câu 3: 9x + 5y + 18 = 2xy

<=> 9(x - 2) - 2y(x - 2) = -y - 36

<=> (x - 2)(9 - 2y) = -y - 36

<=> x - 2 = \(\dfrac{-y-36}{9-2y}\) (1)

Do x - 2 nguyên nên \(-y-36⋮9-2y\)

\(\Rightarrow2y+72⋮9-2y\)\(\Rightarrow2y+72+9-2y⋮9-2y\)

\(\Rightarrow81⋮9-2y\)\(\Rightarrow9-2y\in\left\{1;-1;3;-3;9;-9;27;-27;81;-81\right\}\)

\(\Rightarrow y\in\left\{4;5;3;6;0;9;-9;18;-36;45\right\}\)

Thay lần lượt giá trị của y vào (1) ta được các cặp giá trị (x;y) thỏa mãn là: (43;5); (-11;3); (7;9); (1;-9); (3;45)

13 tháng 6 2017

Câu 4:

a) 2x2 + 2x + 1 = \(\sqrt{4x+1}\) (đk: \(x\ge-\dfrac{1}{4}\))

\(\Rightarrow\left(2x^2+2x+1\right)^2=4x+1\)

<=> 4x4 + 4x2 + 1 + 8x3 + 4x + 4x2 - 4x - 1 = 0

<=> 4x4 + 8x3 + 8x2 = 0 (*)

+) x = 0, thay vào (*) thỏa mãn

+) x \(\ne0\), chia cả 2 vế của (*) cho 4x2 ta được:

x2 + 2x + 2 = 0

<=> (x + 1)2 + 1 = 0, vô nghiệm

Vậy pt có nghiệm x = 0

NV
4 tháng 12 2018

Ta có:

\(f\left(x\right)-f\left(-x\right)=ax^4-bx^2+x+3-\left(a.\left(-x\right)^4-b.\left(-x^2\right)+\left(-x\right)+3\right)\)

\(=ax^4-bx^2+x+3-ax^4+bx^2+x-3=2x\)

\(\Rightarrow f\left(2\right)-f\left(-2\right)=2.2=4\Rightarrow f\left(-2\right)=f\left(2\right)-4=17-4=13\)

AH
Akai Haruma
Giáo viên
5 tháng 3 2020

Bạn tham khảo lời giải tại đây:

Câu hỏi của Duong Thi Nhuong TH Hoa Trach - Phong GD va DT Bo Trach - Toán lớp 8 | Học trực tuyến

Phần b đề không rõ.

6 tháng 3 2020

Mình ghi rõ cho bạn xem nha!

Violympic toán 9

14 tháng 9 2017

\(x=9-\frac{1}{\sqrt{\frac{9}{4}-\sqrt{5}}}+\frac{1}{\sqrt{\frac{9}{4}+\sqrt{5}}}\)

\(=9-\frac{2}{\sqrt{9-4\sqrt{5}}}+\frac{2}{\sqrt{9+4\sqrt{5}}}\)

\(=9-\frac{2}{\sqrt{\left(\sqrt{5}-2\right)^2}}+\frac{2}{\sqrt{\left(\sqrt{5}+2\right)^2}}\)

\(=9-\frac{2}{\sqrt{5}-2}+\frac{2}{\sqrt{5}+2}\)

\(=9-\frac{4+2\sqrt{5}-2\sqrt{5}+4}{\left(\sqrt{5}-2\right)\left(\sqrt{5}+2\right)}\)

\(=9-\frac{8}{5-4}\)

= 1

\(f\left(x\right)=\left(1^4-3+1\right)^{2016}=1\)

11 tháng 10 2017

1/ Ta có: \(x^2-2x-1=\left(\sqrt{2}+1\right)^2-2\left(\sqrt{2}+1\right)-1=0\)

\(\Rightarrow P=\left(x^4-4x^3+4x^2-2\right)^5+\left(x^3-3x^2-x-1\right)^6\)

\(=\left[\left(x^4-2x^3-x^2\right)+\left(-2x^3+4x^2+2x\right)+\left(x^2-2x-1\right)-1\right]^5+\left[\left(x^3-2x^2-x\right)+\left(-x^2+2x+1\right)-2x-2\right]^6\)

\(=\left(-1\right)^5+\left(-2x-2\right)^6\)

Xong

11 tháng 10 2017

5) Lợi dụng AM-GM :v

\(a^4+a^4+a^4+b^4\ge4a^3b\)

\(b^4+b^4+b^4+a^4\ge4b^3a\)

\(\Rightarrow2a^4+2b^4\ge a^4+a^4+ab^3+a^3b=\left(a^3+b^3\right)\left(a+b\right)\)

\(\Rightarrow P\ge\dfrac{a+b}{2ab}+\dfrac{b+c}{2bc}+\dfrac{c+a}{2ac}=\dfrac{\left(a+b\right)c}{2abc}+\dfrac{\left(b+c\right)a}{2abc}+\dfrac{\left(c+a\right)b}{2abc}=\dfrac{2\left(ab+bc+ca\right)}{2abc}=1\)

Đẳng thức xảy ra \(\Leftrightarrow a=b=c=3\)