Rút gọn phân thức
a)3x2 - 12x / x(x - 4)
b) x2+ 2x + 1 / 3(x + 1)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(=\dfrac{\left(x+1\right)\left[\left(3x-2\right)-\left(2x+5\right)\left(x-1\right)\right]}{x+1}\)
=3x-2-2x^2+2x-5x+5
=-2x^2+3
b: \(=\left(2x+1-3+x\right)^2=\left(3x-2\right)^2=9x^2-12x+4\)
c: =x^3-3x^2+3x-1-x^3-1+9x^2-1
=6x^2+3x-3
\(a,\left[\left(3x-2\right)\left(x+1\right)-\left(2x+5\right)\left(x^2-1\right)\right]:\left(x+1\right)\)
\(=\left[\left(3x-2\right)\left(x+1\right)-\left(2x+5\right)\left(x-1\right)\left(x+1\right)\right]:\left(x+1\right)\)
\(=\left[\left(x+1\right)\left(3x-2-\left(2x+5\left(x-1\right)\right)\right)\right]:\left(x+1\right)\)
\(=\left[\left(x+1\right)\left(3x-2-2x^2+2x-5x+5\right)\right]:\left(x+1\right)\)
\(=\left[\left(x+1\right)\left(-2x^2+3\right)\right].\dfrac{1}{x+1}\)
\(=-2x^2+3\)
\(b,\left(2x+1\right)^2-2\left(2x+1\right)\left(3-x\right)\)
\(=\left(2x+1\right)\left[\left(2x+1\right)-2\left(3-x\right)\right]\)
\(=\left(2x+1\right)\left(2x+1-6+2x\right)\)
\(=\left(2x+1\right)\left(4x-5\right)\)
\(c,\left(x-1\right)^3-\left(x+1\right)\left(x^2-x+1\right)-\left(3x+1\right)\left(1-3x\right)\)
\(=x^3-3x^2+3x-1-x^3-1-\left(3x-9x^2+1-3x\right)\)
\(=-3x^2+3x-2-3x+9x^2-1+3x\)
\(=6x^2+3x-3\)
Bài 1:
a) \(3x^2\left(2x^3-x+5\right)-6x^5-3x^3+10x^2\)
\(=6x^5-3x^3+10x^2-6x^5-3x^3+10x^2\)
\(=10x^2+10x^2\)
\(=20x^2\)
b) \(-2x\left(x^3-3x^2-x+11\right)-2x^4+3x^3+2x^2-22x\)
\(=-2x^4+6x^3+2x^2-22x-2x^4+3x^3+2x^2-22x\)
\(=-4x^4+9x^3+4x^2-44x\)
\(a\\ -5x^2+3x.\left(x+2\right)=-5x^2+3x^2+6x=-2x^2+6x\\ b\\ -2x.\left(1-x^2\right)-2x^3=-2x+2x^3-2x^3=-2x\\ c\\ 4x.\left(x-1\right)-4.\left(x^2+2x-1\right)\\ =4x^2-4x-4x^2-8x+4=-12x+4\)
\(d\\ 6x^3-2x^2.\left(-x^2-3x\right)=6x^3+2x^4+6x^3=2x^4+12x^3\\ e\\ 3x.\left(x-1\right)-\left(1+2x\right).5x\\ =3x^2-3x-5x-10x^2=-7x^2-8x\\ f\\ -5x^2-\left(x-6\right).\left(-2x^2\right)=-5x^2+2x^3-12x^2=2x^3-17x^2\)
2:
a: \(9x^2-1=\left(3x\right)^2-1=\left(3x-1\right)\left(3x+1\right)\)
b: \(2\left(x-1\right)+x^2-x\)
\(=2\left(x-1\right)+x\left(x-1\right)\)
\(=\left(x-1\right)\left(x+2\right)\)
c: \(3x^2+14x-5\)
\(=3x^2+15x-x-5\)
\(=3x\left(x+5\right)-\left(x+5\right)=\left(x+5\right)\left(3x-1\right)\)
3:
a: \(2x\left(x-1\right)-2x^2=4\)
=>\(2x^2-2x-2x^2=4\)
=>-2x=4
=>x=-2
b: \(x\left(x-3\right)-\left(x+2\right)\left(x-1\right)=5\)
=>\(x^2-3x-\left(x^2+x-2\right)=5\)
=>\(x^2-3x-x^2-x+2=5\)
=>-4x=3
=>x=-3/4
c: \(4x^2-25+\left(2x+5\right)^2=0\)
=>\(\left(2x-5\right)\left(2x+5\right)+\left(2x+5\right)^2=0\)
=>\(\left(2x+5\right)\left(2x-5+2x+5\right)=0\)
=>4x(2x+5)=0
=>\(\left[{}\begin{matrix}x=0\\x=-\dfrac{5}{2}\end{matrix}\right.\)
a) 2x(x+3) – 3x2(x+2) + x(3x2 + 4x – 6)
= (2x . x + 2x . 3) – (3x2 . x + 3x2 . 2) + (x . 3x2 + x . 4x – x . 6)
= 2x2 + 6x – (3x3 + 6x2) + (3x3 + 4x2 - 6x)
= 2x2 + 6x – 3x3 – 6x2 + 3x3 + 4x2 - 6x
= (– 3x3 + 3x3 ) + (2x2 - 6x2 + 4x2 ) + (6x – 6x)
= 0 + 0 + 0
= 0
b) 3x(2x2 – x) – 2x2(3x+1) + 5(x2 – 1)
= [3x . 2x2 + 3x . (-x)] – (2x2 . 3x + 2x2 . 1) + [5x2 + 5 . (-1)]
= 6x3 – 3x2 – (6x3 +2x2) + 5x2 – 5
= 6x3 – 3x2 – 6x3 - 2x2 + 5x2 – 5
= (6x3 – 6x3 ) + (-3x2 – 2x2 + 5x2) – 5
= 0 + 0 – 5
= - 5
Bài 1:
a: ĐKXĐ: \(x+4\ne0\)
=>\(x\ne-4\)
b: ĐKXĐ: \(2x-1\ne0\)
=>\(2x\ne1\)
=>\(x\ne\dfrac{1}{2}\)
c: ĐKXĐ: \(x\left(y-3\right)\ne0\)
=>\(\left\{{}\begin{matrix}x\ne0\\y-3\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ne0\\y\ne3\end{matrix}\right.\)
d: ĐKXĐ: \(x^2-4y^2\ne0\)
=>\(\left(x-2y\right)\left(x+2y\right)\ne0\)
=>\(x\ne\pm2y\)
e: ĐKXĐ: \(\left(5-x\right)\left(y+2\right)\ne0\)
=>\(\left\{{}\begin{matrix}x\ne5\\y\ne-2\end{matrix}\right.\)
Bài 2:
a: \(\dfrac{-12x^3y^2}{-20x^2y^2}=\dfrac{12x^3y^2}{20x^2y^2}=\dfrac{12x^3y^2:4x^2y^2}{20x^2y^2:4x^2y^2}=\dfrac{3x}{5}\)
b: \(\dfrac{x^2+xy-x-y}{x^2-xy-x+y}\)
\(=\dfrac{\left(x^2+xy\right)-\left(x+y\right)}{\left(x^2-xy\right)-\left(x-y\right)}\)
\(=\dfrac{x\left(x+y\right)-\left(x+y\right)}{x\left(x-y\right)-\left(x-y\right)}=\dfrac{\left(x+y\right)\left(x-1\right)}{\left(x-y\right)\left(x-1\right)}\)
\(=\dfrac{x+y}{x-y}\)
c: \(\dfrac{7x^2-7xy}{y^2-x^2}\)
\(=\dfrac{7x\left(x-y\right)}{\left(y-x\right)\left(y+x\right)}\)
\(=\dfrac{-7x\left(x-y\right)}{\left(x-y\right)\left(x+y\right)}=\dfrac{-7x}{x+y}\)
d: \(\dfrac{7x^2+14x+7}{3x^2+3x}\)
\(=\dfrac{7\left(x^2+2x+1\right)}{3x\left(x+1\right)}\)
\(=\dfrac{7\left(x+1\right)^2}{3x\left(x+1\right)}=\dfrac{7\left(x+1\right)}{3x}\)
e: \(\dfrac{3y-2-3xy+2x}{1-3x-x^3+3x^2}\)
\(=\dfrac{3y-2-x\left(3y-2\right)}{1-3x+3x^2-x^3}\)
\(=\dfrac{\left(3y-2\right)\left(1-x\right)}{\left(1-x\right)^3}=\dfrac{3y-2}{\left(1-x\right)^2}\)
g: \(\dfrac{x^2+7x+12}{x^2+5x+6}\)
\(=\dfrac{\left(x+3\right)\left(x+4\right)}{\left(x+3\right)\left(x+2\right)}\)
\(=\dfrac{x+4}{x+2}\)
\(a,\dfrac{3x^2-12x}{x\left(x-4\right)}=\dfrac{3x\left(x-4\right)}{x\left(x-4\right)}=3\\ b,\dfrac{x^2+2x+1}{3\left(x+1\right)}=\dfrac{\left(x+1\right)^2}{3\left(x+1\right)}=\dfrac{x+1}{3}\)