giải pt: \(\left(2^x-8\right)^3+\left(4^x+13\right)^3=\left(4^x+2^x+5\right)^3\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(8 - \left( {x - 15} \right) = 2.\left( {3 - 2x} \right)\)
\(8 - x + 15 = 6 - 4x\)
\( - x + 4x = 6 - 8 - 15\)
\(3x = - 17\)
\(x = \left( { - 17} \right):3\)
\(x = \dfrac{{ - 17}}{3}\)
Vậy nghiệm của phương trình là \(x = \dfrac{{ - 17}}{3}\).
b) \( - 6\left( {1,5 - 2u} \right) = 3\left( { - 15 + 2u} \right)\)
\( - 9 + 12u = - 45 + 6u\)
\(12u - 6u = - 45 + 9\)
\(u = \left( { - 36} \right):6\)
\(6u = - 36\)
\(u = - 6\)
Vậy nghiệm của phương trình là \(u = - 6\).
c) \({\left( {x + 3} \right)^2} - x\left( {x + 4} \right) = 13\)
\(\left( {{x^2} + 6x + 9} \right) - \left( {{x^2} + 4x} \right) = 13\)
\({x^2} + 6x + 9 - {x^2} - 4x = 13\)
\(\left( {{x^2} - {x^2}} \right) + \left( {6x - 4x} \right) = 13 - 9\)
\(2x = 4\)
\(x = 4:2\)
\(x = 2\)
Vậy nghiệm của phương trình là \(x = 2\).
d) \(\left( {y + 5} \right)\left( {y - 5} \right) - {\left( {y - 2} \right)^2} = 5\)
\(\left( {{y^2} - 25} \right) - \left( {{y^2} - 4y + 4} \right) = 5\)
\({y^2} - 25 - {y^2} + 4y - 4 = 5\)
\(\left( {{y^2} - {y^2}} \right) + 4y = 5 + 4 + 25\)
\(4y = 34\)
\(y = 34:4\)
\(y = \dfrac{{17}}{2}\)
Vậy nghiệm của phương trình là \(y = \dfrac{{17}}{2}\).
Đặt \(2^x-8=u;4^x+13=v\)
Phương trình trở thành \(u^3+v^3=\left(u+v\right)^3\)
\(\Rightarrow u^3+v^3=u^3+3uv\left(u+v\right)+v^3\)
\(\Rightarrow3uv\left(u+v\right)=0\)
*) \(u=0\Rightarrow2^x-8=0\Rightarrow x=3\)
\(v=0\Rightarrow4^x=-13\)(không tồn tại nghiệm thực)
\(u+v=0\Rightarrow2^x+4^x=-5\)(không tồn tại nghiệm thực)
Vậy nghiệm duy nhất của phương trình là 3
\(\left(x+2\right)\left(x-3\right)+3=\left(x-4\right)\left(x+2\right)-7\)
\(\Leftrightarrow x^2-x-6+3=x^2-2x-8-7\)
\(\Leftrightarrow x^2-x-x^2+2x=6-3-8-7\)
\(\Leftrightarrow x=-12\)
Vậy: Phương trình có tập nghiệm \(S=\left\{-12\right\}\)
Đặt \(\hept{\begin{cases}a=2^x-8\\b=4^x+13\end{cases}}\).
Ta có: \(a^3+b^3=\left(a+b\right)^3\)
\(\Leftrightarrow a^3+b^3=a^3+b^3+3ab\left(a+b\right)\)
\(\Leftrightarrow ab\left(a+b\right)=0\)
Ta có các trường hợp:
- \(a=0\Rightarrow2^x-8=0\Leftrightarrow2^x=2^3\Leftrightarrow x=3\).
- \(b=0\Rightarrow4^x+13=0\)(vô nghiệm)
- \(a+b=0\Rightarrow4^x+2^x+5=0\)(vô nghiệm)
(do \(4^x,2^x>0\)với mọi \(x\inℝ\))