K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

DD
15 tháng 12 2020

Đặt \(\hept{\begin{cases}a=2^x-8\\b=4^x+13\end{cases}}\).

Ta có: \(a^3+b^3=\left(a+b\right)^3\)

 \(\Leftrightarrow a^3+b^3=a^3+b^3+3ab\left(a+b\right)\)

\(\Leftrightarrow ab\left(a+b\right)=0\)

Ta có các trường hợp:

\(a=0\Rightarrow2^x-8=0\Leftrightarrow2^x=2^3\Leftrightarrow x=3\).

\(b=0\Rightarrow4^x+13=0\)(vô nghiệm)

\(a+b=0\Rightarrow4^x+2^x+5=0\)(vô nghiệm) 

 (do \(4^x,2^x>0\)với mọi \(x\inℝ\))

HQ
Hà Quang Minh
Giáo viên
13 tháng 9 2023

a) \(8 - \left( {x - 15} \right) = 2.\left( {3 - 2x} \right)\) 

\(8 - x + 15 = 6 - 4x\)

\( - x + 4x = 6 - 8 - 15\)

\(3x =  - 17\)

\(x = \left( { - 17} \right):3\)

\(x = \dfrac{{ - 17}}{3}\)

Vậy nghiệm của phương trình là \(x = \dfrac{{ - 17}}{3}\).

b) \( - 6\left( {1,5 - 2u} \right) = 3\left( { - 15 + 2u} \right)\)

\( - 9 + 12u =  - 45 + 6u\)

\(12u - 6u =  - 45 + 9\)

\(u = \left( { - 36} \right):6\)

\(6u =  - 36\)

\(u =  - 6\)

Vậy nghiệm của phương trình là \(u =  - 6\).

c) \({\left( {x + 3} \right)^2} - x\left( {x + 4} \right) = 13\)

\(\left( {{x^2} + 6x + 9} \right) - \left( {{x^2} + 4x} \right) = 13\)

\({x^2} + 6x + 9 - {x^2} - 4x = 13\)

\(\left( {{x^2} - {x^2}} \right) + \left( {6x - 4x} \right) = 13 - 9\)

\(2x = 4\)

\(x = 4:2\)

\(x = 2\)

Vậy nghiệm của phương trình là \(x = 2\).

d) \(\left( {y + 5} \right)\left( {y - 5} \right) - {\left( {y - 2} \right)^2} = 5\)

\(\left( {{y^2} - 25} \right) - \left( {{y^2} - 4y + 4} \right) = 5\)

\({y^2} - 25 - {y^2} + 4y - 4 = 5\)

\(\left( {{y^2} - {y^2}} \right) + 4y = 5 + 4 + 25\)

\(4y = 34\)

\(y = 34:4\)

\(y = \dfrac{{17}}{2}\)

Vậy nghiệm của phương trình là \(y = \dfrac{{17}}{2}\).

27 tháng 3 2020

Đặt \(2^x-8=u;4^x+13=v\)

Phương trình trở thành \(u^3+v^3=\left(u+v\right)^3\)

\(\Rightarrow u^3+v^3=u^3+3uv\left(u+v\right)+v^3\)

\(\Rightarrow3uv\left(u+v\right)=0\)

*) \(u=0\Rightarrow2^x-8=0\Rightarrow x=3\)

\(v=0\Rightarrow4^x=-13\)(không tồn tại nghiệm thực)

\(u+v=0\Rightarrow2^x+4^x=-5\)(không tồn tại nghiệm thực)

Vậy nghiệm duy nhất của phương trình là 3

1 tháng 3 2018

bậc nhất môt ẩn đây ak

13 tháng 3 2018

Chọn đại -..-

22 tháng 1 2022

\(\left(x+2\right)\left(x-3\right)+3=\left(x-4\right)\left(x+2\right)-7\)

\(\Leftrightarrow x^2-x-6+3=x^2-2x-8-7\)

\(\Leftrightarrow x^2-x-x^2+2x=6-3-8-7\)

\(\Leftrightarrow x=-12\)

Vậy: Phương trình có tập nghiệm \(S=\left\{-12\right\}\)

 

22 tháng 1 2022

\(x^2-3x+2x-6+3-x^2-2x+4x+8+7=0\)

\(x+12=0\)

\(x=-12\)