K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

DD
26 tháng 11 2021

\(A=1+3+3^2+3^3+...+3^{101}\)

\(=\left(1+3+3^2\right)+\left(3^3+3^4+3^5\right)+...+\left(3^{99}+3^{100}+3^{101}\right)\)

\(=\left(1+3+3^2\right)+3^3\left(1+3+3^2\right)+...+3^{99}\left(1+3+3^2\right)\)

\(=13\left(1+3^3+...+3^{99}\right)⋮13\).

8 tháng 12 2017

\(A=3^1+3^2+...+3^{30}\)

=> A=3(1+3) +...+ 329(1+3)

        =3.4+ ... + 329.4 \(⋮\)4

Chia het 13 ban lam tuong tu nhe

11 tháng 10 2015

a, C=(1+3+3^2)+..........+3^9.(1+3+3^2)

C=13+.......+3^9.13

C=13(1+.....+3^9) chia hết cho 13

Vậy C chia hết cho 13

b, C=(1+3+3^2+3^3)+...........+3^8(1+3+3^2+3^3)

C=40+..........+3^8.40

C=40(1+....+3^8) chia hết cho 40

Vậy C chia hết cho 40

11 tháng 10 2015

a) A = (1+3+32) + (33 + 34 + 35) + ... + (39 + 310 + 311)

A = 13 + 33.(1+3+32) + ... + 39.(1+3+32)

A = 13 + 33.13 + ... + 39.13

A = 13.(1+33+...+39) chia hết cho 13 (đpcm)


A = (1 + 3 + 32 + 33) + (34 + 35 + 36 + 37) + (38 + 39 + 310 + 311)

A = 40 + 34.(1 + 3 + 32 + 33) + 38.(1 + 3 + 32 + 33)

A = 40 + 34.40 + 38.40

A = 40.(1 + 34 + 38) chia hết cho 40 (đpcm)

20 tháng 8 2017

Ta có : A =1 +3¹ +3² +3³ +........... +3¹¹

=> A = (1 + 3 + 32) + (3+ 34 + 35) + ...... + (39 + 310 + 311)

=> A = (1 + 3 + 32) + 33(1 + 3 + 32) + ..... + 39(1 + 3 + 32)

=> A = 13 + 33.13 + ..... + 39.13

=> A = 13(1 + 33 + ..... + 39) chia hết cho 13

20 tháng 8 2017

 A = 1 + 31 + 32 + 33 + ... + 311 

 A = 30 + 31 + 32 + 33 + ... + 311 

 A = ( 3+ 3+ 3) + .... + ( 39 + 310 + 311 )

 A = ( 30 . 1 + 30 . 3 + 30 . 9 ) + ... + ( 39 . 1 + 39 . 3 + 39 . 9 )

 A = 30 . ( 1 + 3 + 9 ) + ... + 39 . ( 1 + 3 + 9 ) 

 A = 30 . 13 + .... + 39 . 13

 A = 13 . ( 30 + 33 + 36 + 39 ) 

=> A chia hết cho 13 . 

5 tháng 10 2017

A = 1 + 3 + 32  + 33  + ... + 311 C = ( 1 + 3 + 32  ) + ( 33  + 34  + 35  ) + ... + ( 39  + 310  + 311 ) C = 1 ( 1 + 3 + 32  ) + 33  ( 1 + 3 + 32  ) + ... + 39  ( 1 + 3 + 32  ) C = 1 . 13 + 33  . 13 + ... + 39  . 13 C = 13 ( 1 + 33  + ... + 39  ) chia hết cho 13 => C chia hết cho 13 ( đpcm ) 

9 tháng 5 2018

CÓ khi nào sai đề bài không?

9 tháng 5 2018

ko sai đâu ạ

11 tháng 8 2023

a) \(A=3+3^2+..+3^{60}\)

\(A=\left(3+3^2\right)+\left(3^3+3^4\right)+...+\left(3^{59}+3^{60}\right)\)

\(A=3\cdot\left(1+3\right)+3^3\cdot\left(1+3\right)+...+3^{59}\cdot\left(1+3\right)\)

\(A=4\cdot\left(3+3^3+...+3^{59}\right)\)

Vậy A chia hết cho 4

b) \(A=3+3^2+3^3+...+3^{60}\)

\(A=\left(3+3^2+3^3\right)+...+\left(3^{58}+3^{59}+3^{60}\right)\)

\(A=3\cdot\left(1+3+3^2\right)+...+3^{58}\cdot\left(1+3+3^2\right)\)

\(A=13\cdot\left(3+..+3^{58}\right)\)

Vậy A chia hết cho 13

18 tháng 12 2018

\(Tacó:\hept{\begin{cases}2a+5⋮7\\7a+7⋮7\end{cases}}\Rightarrow\hept{\begin{cases}5a+2⋮7\\7⋮7\end{cases}}\Rightarrow\hept{\begin{cases}10a+4⋮7\\7⋮7\end{cases}}\)

\(\Rightarrow10a+4+7=10a+11⋮7\left(dpcm\right)\)

b, tự tương

18 tháng 12 2018

\(a,2a+5⋮7\Leftrightarrow2a+5+28a+28⋮7\)         (  vì \(28a+28⋮7\) ) 

                     \(\Leftrightarrow30a+33⋮7\)

                     \(\Leftrightarrow3.\left(10a+11\right)⋮7\)

                     \(\Leftrightarrow10a+11⋮7\)   (  vì \(\left(3;7\right)=1\) ) 

Vậy \(2a+5⋮7\Leftrightarrow10a+11⋮7\)

Câu b bn xem lại đề hộ mk chút nhé!

18 tháng 12 2018

nó chỉ cần chia het cho 9 thoi

18 tháng 12 2018

Phần I:ta có (1+2)+(22+23)+...+(26+27)

       =3+22.(1+2)+...+26.(1+2)

       =3.(1+22+...+26)chia hết cho 3


 

24 tháng 7 2019

a) \(3^5+3^4+3^3\)

\(=3^3\cdot3^2+3^3\cdot3+3^3\cdot1\)

\(=3^3\left(3^2+3+1\right)\)

\(=3^3\cdot13⋮13\)     (đpcm)

b) \(2^{10}-2^9+2^8-2^7\)

\(=2^7\cdot2^3-2^7\cdot2^2+2^7\cdot2-2^7\cdot1\)

\(=2^7\left(2^3-2^2+2-1\right)\)

\(=2^7\cdot5⋮5\)    (đpcm)

=))