Cho A=1+3+3^2+3^3+...+3^101.chứng minh A chia hết cho 13
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, C=(1+3+3^2)+..........+3^9.(1+3+3^2)
C=13+.......+3^9.13
C=13(1+.....+3^9) chia hết cho 13
Vậy C chia hết cho 13
b, C=(1+3+3^2+3^3)+...........+3^8(1+3+3^2+3^3)
C=40+..........+3^8.40
C=40(1+....+3^8) chia hết cho 40
Vậy C chia hết cho 40
a) A = (1+3+32) + (33 + 34 + 35) + ... + (39 + 310 + 311)
A = 13 + 33.(1+3+32) + ... + 39.(1+3+32)
A = 13 + 33.13 + ... + 39.13
A = 13.(1+33+...+39) chia hết cho 13 (đpcm)
A = (1 + 3 + 32 + 33) + (34 + 35 + 36 + 37) + (38 + 39 + 310 + 311)
A = 40 + 34.(1 + 3 + 32 + 33) + 38.(1 + 3 + 32 + 33)
A = 40 + 34.40 + 38.40
A = 40.(1 + 34 + 38) chia hết cho 40 (đpcm)
Ta có : A =1 +3¹ +3² +3³ +........... +3¹¹
=> A = (1 + 3 + 32) + (33 + 34 + 35) + ...... + (39 + 310 + 311)
=> A = (1 + 3 + 32) + 33(1 + 3 + 32) + ..... + 39(1 + 3 + 32)
=> A = 13 + 33.13 + ..... + 39.13
=> A = 13(1 + 33 + ..... + 39) chia hết cho 13
A = 1 + 31 + 32 + 33 + ... + 311
A = 30 + 31 + 32 + 33 + ... + 311
A = ( 30 + 31 + 32 ) + .... + ( 39 + 310 + 311 )
A = ( 30 . 1 + 30 . 3 + 30 . 9 ) + ... + ( 39 . 1 + 39 . 3 + 39 . 9 )
A = 30 . ( 1 + 3 + 9 ) + ... + 39 . ( 1 + 3 + 9 )
A = 30 . 13 + .... + 39 . 13
A = 13 . ( 30 + 33 + 36 + 39 )
=> A chia hết cho 13 .
A = 1 + 3 + 32 + 33 + ... + 311 C = ( 1 + 3 + 32 ) + ( 33 + 34 + 35 ) + ... + ( 39 + 310 + 311 ) C = 1 ( 1 + 3 + 32 ) + 33 ( 1 + 3 + 32 ) + ... + 39 ( 1 + 3 + 32 ) C = 1 . 13 + 33 . 13 + ... + 39 . 13 C = 13 ( 1 + 33 + ... + 39 ) chia hết cho 13 => C chia hết cho 13 ( đpcm )
a) \(A=3+3^2+..+3^{60}\)
\(A=\left(3+3^2\right)+\left(3^3+3^4\right)+...+\left(3^{59}+3^{60}\right)\)
\(A=3\cdot\left(1+3\right)+3^3\cdot\left(1+3\right)+...+3^{59}\cdot\left(1+3\right)\)
\(A=4\cdot\left(3+3^3+...+3^{59}\right)\)
Vậy A chia hết cho 4
b) \(A=3+3^2+3^3+...+3^{60}\)
\(A=\left(3+3^2+3^3\right)+...+\left(3^{58}+3^{59}+3^{60}\right)\)
\(A=3\cdot\left(1+3+3^2\right)+...+3^{58}\cdot\left(1+3+3^2\right)\)
\(A=13\cdot\left(3+..+3^{58}\right)\)
Vậy A chia hết cho 13
\(Tacó:\hept{\begin{cases}2a+5⋮7\\7a+7⋮7\end{cases}}\Rightarrow\hept{\begin{cases}5a+2⋮7\\7⋮7\end{cases}}\Rightarrow\hept{\begin{cases}10a+4⋮7\\7⋮7\end{cases}}\)
\(\Rightarrow10a+4+7=10a+11⋮7\left(dpcm\right)\)
b, tự tương
\(a,2a+5⋮7\Leftrightarrow2a+5+28a+28⋮7\) ( vì \(28a+28⋮7\) )
\(\Leftrightarrow30a+33⋮7\)
\(\Leftrightarrow3.\left(10a+11\right)⋮7\)
\(\Leftrightarrow10a+11⋮7\) ( vì \(\left(3;7\right)=1\) )
Vậy \(2a+5⋮7\Leftrightarrow10a+11⋮7\)
Câu b bn xem lại đề hộ mk chút nhé!
Phần I:ta có (1+2)+(22+23)+...+(26+27)
=3+22.(1+2)+...+26.(1+2)
=3.(1+22+...+26)chia hết cho 3
a) \(3^5+3^4+3^3\)
\(=3^3\cdot3^2+3^3\cdot3+3^3\cdot1\)
\(=3^3\left(3^2+3+1\right)\)
\(=3^3\cdot13⋮13\) (đpcm)
b) \(2^{10}-2^9+2^8-2^7\)
\(=2^7\cdot2^3-2^7\cdot2^2+2^7\cdot2-2^7\cdot1\)
\(=2^7\left(2^3-2^2+2-1\right)\)
\(=2^7\cdot5⋮5\) (đpcm)
=))
\(A=1+3+3^2+3^3+...+3^{101}\)
\(=\left(1+3+3^2\right)+\left(3^3+3^4+3^5\right)+...+\left(3^{99}+3^{100}+3^{101}\right)\)
\(=\left(1+3+3^2\right)+3^3\left(1+3+3^2\right)+...+3^{99}\left(1+3+3^2\right)\)
\(=13\left(1+3^3+...+3^{99}\right)⋮13\).