K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 7 2019

a) Ta có P = 4 x 2 ( x − 2 y ) 2 ( x + 2 y ) 2 . ( x + 2 y ) 2 16 x = x 4 ( x − 2 y ) 2  

Với x ≠ 0 ,   x ≠   ± 2 y  

b) Ta có Q = 16 x ( x 2 − 16 ) 2 . x 2 − 16 2 x = 8 16 − x 2  với x ≠ 0 ,    x ≠   ± 4

16 tháng 7 2019

15 tháng 8 2018

3 tháng 3 2023

mik có sửa một chút 

bạn tải lại trang nhé

3 tháng 3 2023

vâng

14 tháng 6 2023

1) Ta có: \(x^2-4xy+4y^2\)

\(=x^2-2.x.2y+\left(2y\right)^2\)

\(=\left(x-2y\right)^2\)

Phép tính trở thành: \(\left(x-2y\right)^2:\left(x-2y\right)=x-2y\)

2) Ta có: \(25x^2+2xy+\dfrac{1}{25}y^2\)

\(=\left(5x\right)^2+2.5x.\dfrac{1}{5}y+\left(\dfrac{1}{5}y\right)^2\)

\(=\left(5x+\dfrac{1}{5}y\right)^2\)

Phép tính trở thành: \(\left(5x+\dfrac{1}{5}y\right)^2:\left(5x+\dfrac{1}{5}y\right)=5x+\dfrac{1}{5}y\)

14 tháng 6 2023

1) (x² - 4xy + 4y²) : (x - 2y)

= (x - 2y)² : (x - 2y)

= x - 2y

2) (25x² + 2xy + 1/25 y²) : (5x + 1/5 y)

= 5x + 1/5 y)² : (5x + 1/5 y)

= 5x + 1/5 y

8 tháng 4 2020

a) Thay \(x=2,y=\frac{1}{2}\), ta được \(B=2^2-4.2.\frac{1}{2}+4.\left(\frac{1}{2}\right)^2=4-4+1=1\)

b) Thay \(x=1,\left|y\right|=2.5\Leftrightarrow x=1,y=2,5\), ta được \(B=1^2-4.1.2,5+4.\left(2,5\right)^2=1-10+25=16\)

c) Thay \(2x=3y,x+2y=-7\Leftrightarrow\left\{{}\begin{matrix}2x-3y=0\\x+2y=-7\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-3\\y=-2\end{matrix}\right.\), ta được \(B=\left(-3\right)^2-4\left(-3\right)\left(-2\right)+4\left(-2\right)^2=9-24+16=1\)

d) Thay $x=2y$, ta được \(B=\left(2y\right)^2-4\left(2y\right)y+4y^2=4y^2-8y^2+4y^2=0\)

8 tháng 4 2020

B=x2-4xy+4.y2.

B=(x2-2xy)+4y2-2xy.

B=x(x-2y)+2y(2y-x)

B=x(x-2y)-2y(2y-x)=(x-2y)2.

a)Thay x=2;y=1/2, ta được:

B=(2-1)2=1

b)TH1:y=2,5

B=(x-2y)2=(1-2.2,5)2=(-4)2=16.

TH2:y=-2,5

B=(x-2y)2=(1+2,5.2)2=62=36

Vậy B=16 hoặc 36.

c)x=\(\frac{3}{2}\)y ⇒y(\(\frac{3}{2}\)+2)=-7

y.\(\frac{7}{2}\)=-7⇒y=-2

x=(-2).\(\frac{3}{2}\)=-3

B=[-3-2.(-2)]2=12=1

d)B=(x-2y)2=02=0.

a) Ta có: \(\left(x+2y\right)\left(x^2-2xy+4y^2\right)-\left(x-y\right)\left(x^2+xy+y^2\right)\)

\(=x^3+\left(2y\right)^3-\left(x^3-y^3\right)\)

\(=x^3+8y^3-x^3+y^3\)

\(=9y^3\)

b) Ta có: \(\left(x+1\right)\left(x-1\right)^2-\left(x+2\right)\left(x^2-2x+4\right)\)

\(=\left(x+1\right)\left(x^2-2x+1\right)-\left(x+2\right)\left(x^2-2x+4\right)\)

\(=x^3-2x^2+x+x^2-2x+1-\left(x^3+8\right)\)

\(=x^3-x^2-x+1-x^3-8\)

\(=-x^2-x-7\)

19 tháng 8 2021

a)\(\dfrac{3\left(x-y\right)^4+2\left(x-y\right)^3-5\left(x-y\right)^2}{\left(y-x\right)^2}=\dfrac{\left(x-y\right)^2\left[3\left(x-y\right)^2+2\left(x-y\right)-5\right]}{\left(x-y\right)^2}=3x^2-6xy+3y^2+2x-2y-5\)

b) \(\dfrac{\left(x-2y\right)^3}{x^2-4xy+4y^2}=\dfrac{\left(x-2y\right)^3}{\left(x-2y\right)^2}=x-2y\)

c) \(\dfrac{x^3+y^3}{x+y}=\dfrac{\left(x+y\right)\left(x^2-xy+y^2\right)}{x+y}=x^2-xy+y^2\)

 

a: \(\dfrac{3\left(x-y\right)^4+2\left(x-y\right)^3-5\left(x-y\right)^2}{\left(y-x\right)^2}\)

\(=\dfrac{3\left(x-y\right)^4+2\left(x-y\right)^3-5\left(x-y\right)^2}{\left(x-y\right)^2}\)

\(=3\left(x-y\right)^2+2\left(x-y\right)-5\)

b: \(\dfrac{\left(x-2y\right)^3}{x^2-4xy+4y^2}\)

\(=\dfrac{\left(x-2y\right)^3}{\left(x-2y\right)^2}\)

=x-2y

c: \(\dfrac{x^3+y^3}{x+y}\)

\(=\dfrac{\left(x+y\right)\left(x^2-xy+y^2\right)}{x+y}\)

\(=x^2-xy+y^2\)