K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 12 2015

gọi UWCLN(a,b)=d

giả sử a=d.m  ; b=d.n

ta có :a.b=d.BCNN(a,b) => BCNN(a,b)=(a.b):d=(m.d.n.d):d=d.m.n

vì ƯCLN(a,b)+BCNN(a,b)=15 hay d+d.m.n=15 =>d.(m.n+1)=15

giả sử a>b =>m>n   ta có:

d               m.n+1                m.n                 m                    n                          a                       b

1                15                        14                14                     1                         14                     1

                                                                 7                       2                         7                      2

3                 5                          4                 4                       1                        12                      3

TICK NHA BẠN

24 tháng 11 2018

Do ƯCLN(a; b) = 15 => a = 15 x m; b = 15 x n (m; n) = 1

=> BCNN(a; b) = 15 x m x n = 300

=> m x n = 300 : 15 = 20

Giả sử a > b => m > n do (m; n) = 1 => m = 20; n = 1 hoặc m = 5; n = 4

+) Với m = 20 và n = 1 thì a = 15 x 20 = 300; b = 15 x 1 = 15

+) Với m = 5 và n = 4 thì a = 15 x 5 = 75; b = 15 x 4 = 60

Vậy các cặp giá trị (m; n) thỏa mãn đề bài là: (300; 15); (75; 60); (15; 300); (60; 75).

28 tháng 5 2021

1: Do (a, b) = 19 nên tồn tại x, y sao cho (x, y) = 1 và \(\left\{{}\begin{matrix}a=19x\\b=19y\end{matrix}\right.\).

Suy ra \(95=a+b=19x+19y\Rightarrow x+y=5\).

Mặt khác, do (x, y) = 1 nên \(\left(x,y\right)\in\left\{\left(1;4\right),\left(2;3\right),\left(3;2\right),\left(4;1\right)\right\}\).

Suy ra \(\left(a,b\right)\in\left\{\left(19;76\right),\left(38;57\right),\left(57;38\right),\left(76;19\right)\right\}\).

28 tháng 5 2021

kkk

AH
Akai Haruma
Giáo viên
15 tháng 11 2023

Đề thiếu rồi bạn. Bạn xem lại.

29 tháng 6 2016

Các bạn cứu với

29 tháng 6 2016

Bó tay ùibucminhXl nhìu nha!!!!!

28 tháng 3 2018

a) ta có UCLN(a;b).BCNN(a;b)=a.b=120.10=1200

UCLN(a;b)=10 \(\Rightarrow\)\(\left\{{}\begin{matrix}a⋮10\\b⋮10\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=10k\\b=10h\end{matrix}\right.\left(k;h\right)=1;k\ge h\)

a.b=1200\(\Leftrightarrow\)10k.10h=1200

nên k.h =1200:100=12

mà (k;h)=1 nên (k;h)=(12;1);(4;3)

nên (a;b)=(120;10);(40;30)

15 tháng 10 2023

 Trước tiên, ta cần chứng minh 2 bổ đề sau:

 Bổ đề 1: Cho 2 số tự nhiên \(a,b\) khác 0. Khi đó  \(ƯCLN\left(a,b\right).BCNN\left(a,b\right)=a.b\)

 Bổ đề 2: Cho 2 số tự nhiên \(a,b\) khác 0. Khi đó:\(ƯCLN\left(a,b\right)+BCNN\left(a,b\right)\ge a+b\)

 Chứng minh:

 Bổ đề 1: Đặt \(\left(a,b\right)=1\) (từ nay ta sẽ kí hiệu \(\left(a,b\right)=ƯCLN\left(a,b\right)\) và \(\left[a;b\right]=BCNN\left(a,b\right)\) cho gọn) \(\Rightarrow\left\{{}\begin{matrix}a=dk\\b=dl\end{matrix}\right.\left(\left(k,l\right)=1\right)\)

  Nên \(\left[a,b\right]=dkl\) \(\Rightarrow\left(a;b\right)\left[a;b\right]=dk.dl=ab\). Ta có đpcm.

 Bổ đề 2: Vẫn giữ nguyên kí hiệu như ở chứng minh bổ đề 1. Ta có \(k\ge1,l\ge1\) nên \(\left(k-1\right)\left(l-1\right)\ge0\)

 \(\Leftrightarrow kl-k-l+1\ge0\)

 \(\Leftrightarrow kl+1\ge k+l\)

 \(\Leftrightarrow dkl+d\ge dk+dl\)

 \(\Leftrightarrow\left[a,b\right]+\left(a,b\right)\ge a+b\) (đpcm)

Vậy 2 bổ đề đã được chứng minh.

a) Áp dụng bổ đề 1, ta có \(ab=\left(a,b\right)\left[a,b\right]=15.180=2700\) và \(a+b\le\left(a,b\right)+\left[a,b\right]=195\). Do \(b\ge a\) \(\Rightarrow a^2\le2700\Leftrightarrow a\le51\)

 Mà \(15|a\) nên ta đi tìm các bội của 15 mà nhỏ hơn 51:

  \(a\in\left\{15;30;45\right\}\)

 Khi đó nếu \(a=15\) thì \(b=180\) (thỏa)

 Nếu \(a=30\) thì \(b=90\) (loại)

 Nếu \(a=45\) thì \(b=60\) (thỏa)

 Vậy có 2 cặp số a,b thỏa mãn ycbt là \(15,180\) và \(45,60\)

Câu b làm tương tự.

15 tháng 10 2023

 Ko bt