Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
a. Gọi $d=ƯCLN(a,b)$. Khi đó, đặt $a=dx, b=dy$ với $x,y$ là số tự nhiên, $x,y$ nguyên tố cùng nhau.
Khi đó: $BCNN(a,b)=dxy$
Theo bài ra: $d+dxy=19$
$\Rightarrow d(1+xy)=19$
Do $d, 1+xy$ đều là số tự nhiên nên có 2 TH xảy ra:
TH1: $d=1, 1+xy=19\Rightarrow d=1, xy=18$
Do $ƯCLN(x,y)=1$ nên $(x,y)=(1,18), (2,9), (9,2), (18,1)$
$\Rightarrow (a,b)=(dx, dy) +(1,18), (2,9), (9,2), (18,1)$
b,c bạn làm tương tự theo hướng của câu a nhé.
Giả sử \(a\ge b\).
\(\left(a,b\right)=15\Rightarrow a=15m,b=15n\)với \(\left(m,n\right)=1;m\ge n\).
\(ab=\left[a,b\right].\left(a,b\right)=2100.15=31500\)
\(ab=15m.15n=225mn=31500\Rightarrow mn=140=2^2.5.7\).
mà \(\left(m,n\right)=1;m\ge n\)nên ta có bảng giá trị:
m | 20 | 28 | 35 | 140 |
n | 7 | 5 | 4 | 1 |
a | 300 | 420 | 525 | 2100 |
b | 105 | 75 | 60 | 15 |
a)vì ƯCLN(a,b)=15
=>a=15m ,n=15n (ƯCLN(m,n)=1)
BCNN(a,b)=300
15m.n=300
=>m.n=20
có:
m=1 , n=20 => a=15 , b=300
m=4 , n=5 =>a=60 ,b=75
=> hai số phải tìm a và b là : (15 và 300) , (60 và 75)
b)vì ƯCLN (a,b)=10
=>a=10m , b=10n (ƯCLN(m,n)=1)
BCNN(a,b)=30
=>10m.n=30
=>m.n=3
có:
m=1 , n=3 =>a=10 , b= 30
=> a,b=10 và 30
Do ƯCLN(a; b) = 15 => a = 15 x m; b = 15 x n (m; n) = 1
=> BCNN(a; b) = 15 x m x n = 300
=> m x n = 300 : 15 = 20
Giả sử a > b => m > n do (m; n) = 1 => m = 20; n = 1 hoặc m = 5; n = 4
+) Với m = 20 và n = 1 thì a = 15 x 20 = 300; b = 15 x 1 = 15
+) Với m = 5 và n = 4 thì a = 15 x 5 = 75; b = 15 x 4 = 60
Vậy các cặp giá trị (m; n) thỏa mãn đề bài là: (300; 15); (75; 60); (15; 300); (60; 75).
a) Đặt a = 15m ; b = 15n ; (m,n) = 1
Khi đó ta có : BCNN(a;b) = 15mn = 2100.15 = 31500
Vậy thì mn = 2100 = 22.3.52.7 = 1.2100 = 4.525 = 3.700 = 25.84 = 7.300 = 12.175 = 100.21 = 28.75
Vậy nên ta có các cặp (a;b) thỏa mãn là: (15, 31500) ; (31500 , 15) ; ( 60 , 7875) ; (7875 , 60) ; (45 , 10500) ; (10500 , 45) ; (375 , 1260) ; (1260 , 375) ; (105 , 1500) , (1500 , 105) ; (180, 2625) ; (2625 , 180) ; (1500 , 315) ; (315, 1500) ; (420 , 1125) ; (1125 , 420).
b) Đặt d = (a,b). Khi đó a = dm ; b = dn ; (m,n) = 1
Ta có dm.dn = 180 và dmn = 20.d
Vậy thì mn = 20 và d2 = 180 : 20 = 9
Vậy thì d = 3.
Ta có mn = 20 = 22.5 = 1.20 = 4.5
Vậy nên cá cặp số (a;b) thỏa mãn là: (3,60) ; (60, 3) ; (12, 15) ; (15, 12).
a.
Vì $ƯCLN(a,b)=48$ nên đặt $a=48x, b=48y$ với $(x,y)=1$. Ta có:
$5a=13b$
$\Rightarrow 5.48x=13.48y$
$\Rightarrow 5x=13y$
$\Rightarrow 5x\vdots 13; 13y\vdots 5$
$\Rightarrow x\vdots 13; y\vdots 5$. Đặt $x=13m, y=5n$. Do $(x,y)=1$ nên $(n,m)=1$.
Ta có: $5.13m=13.5n\Rightarrow m=n$. Vì $(m,n)=1$ nên $m=n=1$
$\Rightarrow x=13; y=5$
$\Rightarrow x=13.48=624; y=5.48=240$
b.
Gọi $ƯCLN(a,b)=d$ thì $a=dx, b=dy$ với $(x,y)=1$.
Khi đó:
$BCNN(a,b)=dxy=360$
$ab=dx.dy=d.dxy=6480$
$\Rightarrow d.360=6480$
$\Rightarrow d=18$
$\RIghtarrow xy=360:d=360:18=20$
Do $(x,y)=1$ nên $x,y$ có thể nhận các cặp giá trị là:
$(x,y)=(1,20), (4,5), (5,4), (20,1)$
Đến đây bạn thay vào tìm $a,b$ thôi.