K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 11 2023

a: Để (d)//y=3x+1 thì \(\left\{{}\begin{matrix}m-3=3\\m+2< >1\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}m=6\\m< >-1\end{matrix}\right.\)

=>m=6

b: (d): y=(m-3)x+m+2

=mx-3x+m+2

=m(x+1)-3x+2

Tọa độ điểm mà (d) luôn đi qua là:

\(\left\{{}\begin{matrix}x+1=0\\y=-3x+2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-1\\y=-3\cdot\left(-1\right)+2=3+2=5\end{matrix}\right.\)

c: y=(m-3)x+m+2

=>(m-3)x-y+m+2=0

Khoảng cách từ O đến (d) là:

\(d\left(O;\left(d\right)\right)=\dfrac{\left|0\left(m-3\right)+0\cdot\left(-1\right)+m+2\right|}{\sqrt{\left(m-3\right)^2+\left(-1\right)^2}}=\dfrac{\left|m+2\right|}{\sqrt{\left(m-3\right)^2+1}}\)

Để d(O;(d))=1 thì \(\dfrac{\left|m+2\right|}{\sqrt{\left(m-3\right)^2+1}}=1\)

=>\(\sqrt{\left(m-3\right)^2+1}=\left|m+2\right|\)

=>\(\sqrt{\left(m-3\right)^2+1}=\sqrt{\left(m+2\right)^2}\)

=>\(\left(m-3\right)^2+1=\left(m+2\right)^2\)

=>\(m^2-6m+9+1=m^2+4m+4\)

=>-6m+10=4m+4

=>-10m=-6

=>\(m=\dfrac{3}{5}\left(nhận\right)\)

15 tháng 12 2021

\(a,\) Gọi điểm cố định (d) luôn đi qua là \(A\left(x_0;y_0\right)\)

\(\Leftrightarrow y_0=\left(m-2\right)x_0+2\Leftrightarrow mx_0-2x_0+2-y_0=0\\ \Leftrightarrow\left\{{}\begin{matrix}x_0=0\\2-2x_0-y_0=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_0=0\\y_0=2\end{matrix}\right.\Leftrightarrow A\left(0;2\right)\)

Vậy \(A\left(0;2\right)\) là điểm cố định mà (d) lun đi qua

\(b,\) PT giao Ox,Oy: \(y=0\Leftrightarrow x=\dfrac{2}{2-m}\Leftrightarrow B\left(\dfrac{2}{2-m};0\right)\Leftrightarrow OB=\dfrac{2}{\left|m-2\right|}\\ x=0\Leftrightarrow y=2\Leftrightarrow C\left(0;2\right)\Leftrightarrow OC=2\)

Gọi H là chân đường cao từ O đến (d) \(\Leftrightarrow OH=1\)

Áp dụng HTL: \(\dfrac{1}{OH^2}=1=\dfrac{1}{OB^2}+\dfrac{1}{OC^2}=\dfrac{\left(m-2\right)^2}{4}+\dfrac{1}{4}\)

\(\Leftrightarrow m^2-4m+4+1=4\\ \Leftrightarrow m^2-4m+1=0\\ \Leftrightarrow\left[{}\begin{matrix}m=2+\sqrt{3}\\m=2-\sqrt{3}\end{matrix}\right.\)

\(c,\) Áp dụng HTL: \(\dfrac{1}{OH^2}=\dfrac{1}{OC^2}+\dfrac{1}{OB^2}=\dfrac{\left(m-2\right)^2}{4}+\dfrac{1}{4}\)

Đặt \(OH^2=t\)

\(\Leftrightarrow\dfrac{1}{t}=\dfrac{m^2-4m+5}{4}\Leftrightarrow t=\dfrac{4}{\left(m-2\right)^2+1}\le\dfrac{4}{0+1}=4\\ \Leftrightarrow OH\le2\\ OH_{max}=2\Leftrightarrow m=2\)

a: loading...

b: Để (d)//(d') thì \(\left\{{}\begin{matrix}m+1=2\\6< >-2\left(đúng\right)\end{matrix}\right.\)

=>m+1=2

=>m=1

c:

(d'): y=(m+1)x+6

=>(m+1)x-y+6=0

Khoảng cách từ O đến (d') là:

\(d\left(O;\left(d'\right)\right)=\dfrac{\left|0\cdot\left(m+1\right)+0\cdot\left(-1\right)+6\right|}{\sqrt{\left(m+1\right)^2+\left(-1\right)^2}}\)

\(=\dfrac{6}{\sqrt{\left(m+1\right)^2+1}}\)

Để \(d\left(O;\left(d'\right)\right)=3\sqrt{2}\) thì \(\dfrac{6}{\sqrt{\left(m+1\right)^2+1}}=3\sqrt{2}\)

=>\(\sqrt{\left(m+1\right)^2+1}=\sqrt{2}\)

=>\(\left(m+1\right)^2+1=2\)

=>\(\left(m+1\right)^2=1\)

=>\(\left[{}\begin{matrix}m+1=1\\m+1=-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}m=0\\m=-2\end{matrix}\right.\)

10 tháng 11 2018

thế nào là số nguyên tố ,hợp số?cho ví dụ

10 tháng 11 2018

1,      hoành độ giao điểm của hai điểm

\(\hept{\begin{cases}y=x+2\\y=-3x+4\end{cases}}\)  là nghiệm của pt

\(\Leftrightarrow x+2=-3x+4\)

\(\Leftrightarrow x=\frac{1}{2}\)  <=> y= 5/2

thay vào pt (d)  <=> m= -3

2 bạn viết lại đề nhé 

3 gọi điểm cố định mà (d) luôn đi qua là  (x0;y0)   với mọi m. khi đó pt

\(y._0=\left(m-2\right)x._0+2-m\)  có nghiệm với mọi m

\(\Leftrightarrow mx._0-2x_0+2-m-y._0=0\)

\(\Leftrightarrow\left(x._0-1\right)m-y._0+2=0\)

để đồ thi đi qua điểm cố định với mọi m thì 

\(\hept{\begin{cases}x_0-1=0\\-y_0+2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x_0=1\\y_0=2\end{cases}}}\)

d luôn đi qa (1;2)

14 tháng 12 2021

Xét pthđ giao điểm của d1 và d2
x-4=2x+3
<=> x= -7
Thay x=-7 vào d1 
y=-7-4=-11 => A(-7:-11) là giao điểm d1 và d2
Thay x=-7 vào d3 -> y=m(-7)+m+1=-6m+1=-11
- Để d1 d2 d3 đq -> A ∈∈d3
-> -6m+1=-11
-6m=-12
m=2 
Vậy m=2 thì 3 đường thẳng d1 , d2 , d3 đq